
Studies in Evolutionary Algorithms

Michael Stillwell

B.A., B.Sc. (Hons) Monash University

A major thesis submitted in fulfillment

of the requirements for the

Degree of Master of Computing

School of Computer Science and Software Engineering

Faculty of Information Technology

Monash University

November 13, 2001

Contents

Declaration iv

Acknowledgements v

1 Introduction 1

1.1 About Evolutionary Algorithms 1

1.2 Thesis Overview . 2

2 Evolutionary Algorithm Dynamics 4

2.1 What are Genetic Algorithms? 4

2.2 Genetic Algorithms as a Search Procedure 5

2.3 The Schema Theorem . 6

2.3.1 What is a Schema? . 7

2.3.2 The Fate of Individuals is not Pertinent 8

2.3.3 Change in Frequency over Time 10

2.3.4 Change in Fitness over Time 11

2.3.5 Incorporating the Effects of Crossover and Mutation . 13

2.3.6 The Implications of the Schema Theorem 14

2.4 The Building Block Hypothesis 19

2.4.1 What is the Building Block Hypothesis? 19

2.4.2 The Static Building Block Hypothesis 21

2.5 The Two-Way Onemax Problem 22

2.5.1 Description . 22

2.5.2 Significance . 24

i

CONTENTS ii

2.6 Obstacles . 25

2.6.1 Fitness and Hard Problems 25

2.6.2 Preadaptation . 27

3 Selection 30

3.1 Introduction . 30

3.2 Some Selection Schemes . 31

3.2.1 Fitness-Proportional Selection 31

3.2.2 Fitness-Proportional Selection with Fitness Scaling . . 31

3.2.3 Rank Selection . 32

3.2.4 Truncation Selection 33

3.2.5 Tournament Selection 33

3.2.6 Minimising the Stochastic Error 33

3.3 Characterising Selection Schemes 35

3.3.1 Reproduction Rate . 35

3.3.2 Selection Intensity and Variance 36

3.3.3 Loss of Diversity . 36

3.3.4 Graphs of Selection Schemes 40

3.4 Choosing a Selection Scheme 42

4 Selection Profiles 45

4.1 Introduction . 45

4.2 The Importance of Spread . 47

4.2.1 Introduction . 47

4.2.2 Method . 47

4.2.3 Results and Discussion 51

4.3 Evolving Selection Profiles . 52

4.3.1 Introduction . 52

4.3.2 Method . 53

4.3.3 Experiment 1: Results and Discussion 55

4.3.4 Experiment 2: Results and Discussion 59

4.3.5 Experiment 3: Results and Discussion 61

CONTENTS iii

5 Summary of Results and Conclusions 65

A How Many Schemata are Processed? 67

A.1 Holland’s Estimate . 67

A.2 Goldberg’s Estimate . 68

A.3 An Alternative Estimate . 72

A.4 Comparison of Measures . 76

Bibliography 79

Declaration

I, Michael Stillwell, affirm that the thesis contains no material which has

been accepted or submitted for the award of degree at any university.

To the best of my knowledge and belief, the thesis contains no mate-

rial previously published or written by any other person, except where due

reference is made in the text.

iv

Acknowledgements

So many people helped me with this work. I must first thank my family:

my mother and father, and my brother. They have been supportive when I

needed it, inspirational when I lacked it, and reasonable when I was not.

I thank my father, John Stillwell, for help with some of the mathematical

details. (If only math were as easy for me as it is him.)

I am most grateful to the School of Computer Science and Software En-

gineering for providing me with a postgraduate scholarship.

Thanks also go to my two office-mates: Brian May (who kept me up-

to-date with what was going on in the computer world as I struggled with

evolutionary biology) and Tao Chen (who kept me company late—and some-

times very late—at night).

Finally I wish to thank Kevin Korb and Lloyd Allison: two of the finest

supervisors one could ever hope to know. Their wit and insight informed

every single page of this work.

v

Chapter 1

Introduction

1.1 About Evolutionary Algorithms

Evolutionary Algorithms (EAs) simulate the process of evolution on a digital

computer: for each aspect of evolution in nature—the genome, reproduction,

“survival of the fittest,” etc.—EAs have their artificial analogue. There are

several different types of EAs, the most prominent of which are genetic al-

gorithms and genetic programming. In each, we have a collection of binary

strings1 representing “individuals,” we have a fitness function that determines

the effectiveness of each individual, and we have functions that simulate the

effects of reproduction and death.

Computer scientists (and others) are interested in EAs due to what one

might say is the flip side to the “argument from design.” In the 19th Century,

many people found evolution hard to accept, in part because it required

one to believe that a process as directionless, haphazard and random as

evolution could produce structures as complex and subtle as eyes, ears and

wings. Every part of every animal seemed not only perfectly designed, but

perfectly designed to work with each other. These facts seemed to lead to

the conclusion that God, not evolution, was behind it all.

Needless to say, the agency of evolution has now been established to

1Or data structures ultimately reducible to binary strings.

1

CHAPTER 1. INTRODUCTION 2

(almost) everyone’s satisfaction. But this doesn’t take anything away from

the beauty and sophistication of the natural world that Darwin’s doubters

so strongly felt. If evolution, and not an omniscient and omnipotent God,

created the birds and the bees, then evolution is clearly a problem-solving

mechanism of extraordinary power.

Though evolution is both undirected and unthinking, it is able—if given

sufficient time—to devise solutions to remarkably difficult engineering prob-

lems. The sensory organs of many animals, for example, exceed by far the

capabilities of the best human designs. And the human brain—perhaps the

most impressive product of evolution’s factory—is an organ not likely to be

surpassed anytime soon by anything humans can devise, at least in terms

of space requirements, power consumption, noise production, durability, and

price.

These are all reasons to find evolution interesting, but computer scientists

have an additional one: it seems that all there is to it is the mindless exe-

cution of a few simple instructions very many times, which is exactly what

computers are good for. For the simulation of evolution, computers seem

perfect; if we are indeed able to simulate the process of evolution in silico,

then perhaps we can use computers to bring the problem-solving power of

evolution to bear on problems of our own.

1.2 Thesis Overview

There are two main sections to this thesis. In the first, we investigate the

dynamics of EAs, with a particular focus on Genetic Algorithms (GAs). After

describing how GAs work, we present and critique two prominent dynamical

descriptions, the Schema Theorem and the Building Block Hypothesis, both

of which attempt to describe and predict how GAs behave. We conclude the

section with some remarks on the potential of EAs.

The second section deals with the process of selection—that is, which in-

dividuals should be selected to reproduce and when. We explain and describe

CHAPTER 1. INTRODUCTION 3

some important selection schemes, then detail the results of our experiments

on “selection profiles.”

Chapter 2

The Dynamics of Evolutionary

Algorithms

2.1 What are Genetic Algorithms?

Of all the Evolutionary Algorithms, the best understood are Genetic Algo-

rithms (GAs). They are also the variety closest to evolution as it occurs in

nature. We briefly describe the operation of a canonical GA here.

GAs work with a population of individuals (usually a few hundred), where

each individual is a bit string (usually less than one hundred bits). This

population is initialised to random bit strings. Each individual represents a

potential solution to a problem. For example, if we are trying to find the value

of x that maximises the function x · sin(10π · π) + 1.0 over the range [−1, 2],

different individuals will encode different values of x. In the first instance,

the GA aims to turn a population of good solutions into a population of

better ones. It does this by “breeding” from the better individuals using

two procedures copied from nature: crossover and mutation. Crossover is

analogous to sexual reproduction—it takes two parent individuals (two bit

strings) and creates a child from them by taking some genetic material from

one parent (say the first 30 bits), and some from the other (the last 70).

Mutation is simply the flipping of some small number of randomly chosen

4

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 5

bits. After the GA has created a new population of individuals in this way,

it repeats the process until the optimum is found, or some stopping point is

reached.

2.2 Genetic Algorithms as a Search Proce-

dure

GAs are inspired by a biological process, but in reality they are nothing more

than a search procedure. Suppose we have a problem whose solution is to

be found at one of the 2100 points in the search space. A GA represents just

one way of sifting through this search space; there are of course many others.

We briefly list some here (after Langdon, 1998, p. 15–6):

Exhaustive Enumeration Try each of the 2100 bit strings in turn until a

solution is found.

Newton’s Method Calculate (or estimate) the derivative of the function

representing the surface to be maximised and use this information to

step toward the solution.

Simulated Annealing Pick a point at random then take ever-smaller steps

in the general direction (chosen stochastically) of better points.

It is relatively easy to determine what search trajectories each of these

three search techniques will take through the search space. Consequently, it

is easy to see which sorts of problems they are likely to find hard, and which

they are likely to find easy. (Problems that give rise to a smooth search space

will (in general) be easy, problems with a rough search space will (in general)

be hard—exhaustive enumeration finds every problem equally difficult.) The

search trajectory of evolutionary algorithms, however, is considerably more

difficult to determine; the action of crossover, in particular, seems to lead to

large, difficult-to-track jumps from one point to another.

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 6

Nevertheless, it is vital that this process be understood. Evolutionary

algorithms have successfully solved many non-trivial problems1. However, for

EAs to enjoy even greater success, their workings must be better understood.

Knowing that they do work is not enough: we also need to know exactly why

they work. Why does the process of repeated selection and reproduction

frequently yield good solutions to problems? And especially: which problems

do they find easy, and which do they find hard? Answering these questions

requires a full account of the dynamic behaviour of evolutionary algorithms.

A suitable theory is not likely to be developed any time soon. However,

over the past 25 years, our understanding of evolutionary algorithms has

gradually improved. Two important contributions are the Schema Theorem

and the Building Block Hypothesis. These are discussed below.

2.3 The Schema Theorem

In Adaptation in Natural and Artificial Systems (Holland, 1975), John Hol-

land presented the Schema Theorem, which says that substrings of above-

average fitness will increase in the population at an exponential rate. Though

this was hardly a complete account of the dynamic behaviour of GAs, it was

useful in that it provided a hint as to why they were so successful: even

though we did not know exactly what was going on, we did know that useful

substrings (“building blocks”) were accumulating within the population. We

describe the Schema Theorem below. Later on we consider some objections.

1We are aware of Wolpert and Macready (1995) (following Hume, 1739), which proves

that no search procedure can outperform any other (including blind search) across the set

of all search problems. However, we hold that the world is such that some problems are

more likely to be encountered than others, making some search procedures more useful

than others. (In the same way, some data compression routines happen to be more useful

than others, despite the fact that no data compression routine can outperform any other

across the set of all data.)

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 7

2.3.1 What is a Schema?

A schema (plural schemata) is a string of letters taken from the alphabet

{0, 1, *}. Schemata are templates, or patterns, where the * character repre-

sents the “don’t care” symbol (it is a wildcard). For example, the pattern

101***** matches all binary strings of length 8 that begin with 101; strings

that match schemata are said to be instances of them. The number of char-

acters that must match (i.e., the number of non-wildcards) for a schema to

be satisfied is known as the schema’s order ; the distance between the first

non-wildcard and the last non-wildcard is the schema’s defining length. For

example, the schema **1*10** is of order 3 and has a defining length of 4.

We will sometimes use the word “schema” to mean the template itself, and

sometimes to mean the set of strings2 the template matches. Note that the

set of all schemata is much smaller than the set of all subsets; there are 3l

schemata of length l but there are 22l
possible bit string subsets.

How do schemata help us understand the dynamics of genetic algorithms?

To answer this question, we first need to understand the dynamics of the

individual bit strings. A genetic algorithm explicitly calculates the fitness

of every bit string in the population. (So for some problem, the bit string

11101010 might have a fitness of 0.67 and the string 11111111 might have

a fitness of 1.0.) In Holland’s original, canonical, GA, individual strings are

selected for reproduction on the basis of their relative fitness, that is, the

fitness of the string, divided by the mean fitness of all the bit strings in the

population.

This means that if f(s) is the objective fitness of s, fµ is the mean fitness,

and m(s) is s’s number of offspring, then the expected number of offspring

is

E(m(s)) = f(s)/fµ (2.1)

2At least one author has taken this idea even further, and considers schemata to be

predicates—“*11(x) = true iff x matches *11 at every position not containing *” (Vose,

1991, p. 386). It is sometimes useful to think of schemata as limited predicates in this

way.

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 8

We can also calculate the variance. If n is the population size, then

Var(m(s)) = n

(
f(s)

nfµ

)(
1 − f(s)

nfµ

)

=
f(s)

fµ

− f(s)2

nf 2
µ

(2.2)

(After Feller, 1968, p. 228.)

Holland realised that although it is individual strings that are directly

manipulated—the fittest ones increase in number, the less-fit ones decrease

and so on—the schemata contained within the population are subject to

exactly the same pressures. (This is proved in Section 2.3.2.) That is to

say, if the mean fitness of schema 11****** (the mean of the fitnesses of all

matching bit strings) is twice that of 00*****, and there are equal numbers

of both schema, then we can expect that in the next generation there will be

twice as many instances of 11****** as there are of 00******, even though it

is individual bit strings, and not schemata, that are explicitly processed. For

each schema present (i.e., each schema that matches at least one member of

the population), the change in frequency from one generation to the next is

proportional to the schema’s relative mean fitness. (That is, the mean fitness

of all matching bit strings, divided by the mean fitness of the population.)

Because the number of schema “processed” is vastly greater than the number

of individual bit strings processed (see Appendix A for exactly how much

more), GAs are said to exhibit “implicit parallelism.” This, it is claimed, is

one source of their power.

2.3.2 The Fate of Individuals is not Pertinent

As we have observed, a population contains many more schemata than indi-

viduals. (Michalewicz (1996, p. 54) wryly notes, “This constitutes possibly

the only known example of a combinatorial explosion working to our advan-

tage instead of our disadvantage.”) There are 3l possible schemata in a given

population, where l is the length of each bit string because each position can

take on the value 0, 1 or *. A possible arrangement is shown in Table 2.1.

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 9

Schema (Mean) Fitness

***** 0.70

****0 0.60

****1 1.20
...

...

101 Not present

110 0.50

111 0.80
...

...

11111 1.50

Table 2.1: Possible arrangement of schemata.

It is claimed that from one generation to the next, the frequency of each

of the 3l schemata change as dictated by their relative fitness. This is to be

achieved by processing individual bit strings.

At first blush, this appears to be impossible. But possible it is: though

there are a multitude of constraints, as it turns out, they can all be satisfied.

If s1, s2, . . ., sk are (not necessarily unique) instances of schema H, then the

fitness of H is3

f(H) =

∑k
i=1 f(si)

k

The relative fitness of H is then

fR(H) = f(H)/fµ =

∑k
i=1 f(si)

kfµ

We want the number of matching individuals, k, to increase by the relative

fitness, or fR(H). Therefore, we expect that the number of instances of

schema H in the next generation will be k × fR(H). But the GA cannot

directly control the incidence of individual schemata—the fate of H depends

on the fate of the individual bit strings that represent it (if we ignore crossover

3This notation is due to Goldberg (1989); H stands for “hyperplane.”

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 10

and mutation). What is the GA’s effect on them? According to equation (2.1)

the expected frequency of bit string si is f(si)/fµ. Thus

k∑
i=1

f(si)/fµ = k × fR(H)

=
k

∑k
i=1 f(si)

kfµ

where the LHS and RHS are readily seen to be equal. Thus, the expected

size of the schema as calculated by the change in frequency of its members

(left side) equals the expected size of the schemata as calculated by schema’s

fitness (right side), as required. Hence, we can re-write equation (2.1) in

terms of schemata:

E(m′(H)) = m(H) × fR(H) = m(H)
f(H)

fµ

(2.3)

which demonstrates that a GA behaves as if it were processing schemata

directly, even though it does no such thing. The variance is

Var(m′(H)) =
k∑

i=1

(
f(si)

fµ

− f(si)
2

nf 2
µ

)

=
1

fµ

k∑
i=1

f(si) − 1

nf 2
µ

k∑
i=1

f(si)
2 (2.4)

Note that these relations hold for every one of the 3l schemata. This is

trivially so in the case of the schemata not represented (not matched), since

their observed fitness is (in effect) zero, and thus their expected frequency

is also zero. But every schema, of every order and defining length that

is represented will change in frequency according to equation (2.3), with a

variance equal to equation (2.4).

2.3.3 Change in Frequency over Time

From equation (2.3) it can be seen that the change in schema frequency is

dependent on the value of the expression f(H)/fµ. Consequently, the only

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 11

possible rate of growth is exponential: if the fitness of the schema stays above

the mean, it will experience an exponential increase; if the fitness is below

the mean, it will experience an exponential decrease. It is not possible to

give figures any more precise than this without knowledge of the specific

problem being investigated, the objective function used, and the resulting

populations.

2.3.4 Change in Fitness over Time

We can also use equation (2.3) to determine the change in (mean) schema

fitness over time. At each generation after the first, the schema frequency is

equal to the sum over s ∈ H of however many instances there were in the

previous generation, multiplied by the reproduction rate of each s. The mean

fitness is the sum over s ∈ H of the expected number of instances multiplied

by the fitness of s, divided by the expected number of matches for the entire

schema. That is,

Gen. Schema Frequency Schema Fitness

0 k
∑k

i=1 f(si)/k

1
∑k

i=1 f(si)/fµ(0)

∑k
i=1 f(si) × f(si)/fµ(0)∑k

i=1 f(si)/fµ(0)

=

∑k
i=1 f(si)

2∑k
i=1 f(si)

2
∑k

i=1 f(si)/fµ(0) × f(si)/fµ(1)

∑k
i=1 f(si) × f(si)/fµ(0) × f(si)/fµ(1)∑k

i=1 f(si)
2

fµ(0) × fµ(1)

=

∑k
i=1 f(si)

2

fµ(0) × fµ(1)
=

∑k
i=1 f(si)

3∑k
i=1 f(si)2

...
...

...

g

∑k
i=1 f(si)

k

fµ(0) × fµ(1) × · · · × fµ(k − 1)

∑k
i=1 f(si)

g+1∑k
i=1 f(si)g

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 12

where s1, s2, . . ., sk are the (not necessarily unique) bit strings that match H

and fµ(g) is the mean fitness of the population at generation g.

Hence, if ∆(H, g) is the expected fitness of schema H at generation g,

then

∆(H, g) =

∑k
i=1 f(si)

g+1∑k
i=1 f(si)g

(2.5)

This result has a number of surprising implications: (a) a schema’s fitness

depends only on the fitnesses of the bit strings that match it—the fitness of

non-matching strings, the fitness of the population as a whole, and the size

of population is irrelevant; (b) over time, the mean fitness of each and every

schema can be expected to increase (even schemata of below average fitness);

and (c) the mean fitness approaches that of the fittest member.4

The proof is as follows. Suppose T = {t1, t2, . . ., tm} (where ti > 0) and

f(n) =

∑m
i=1 tn+1

i∑m
i=1 tni

Without loss of generality, assume that tm is max(T). Then

f(n) =

∑m
i=1 tn+1

i∑m
i=1 tni

4The conclusions are possibly unexpected, but they do have a satisfactory explanation.

The paradoxes arise not because the effects of crossover and mutation have been ignored

but because we have effectively assumed that individual bit strings can exist in fractional

quantities, which is of course impossible.

Initially, a schema is represented by a number of distinct, but not necessarily unique bit

strings, each present exactly once. However, after one generation, their expected quantities

change, most likely to a non-integral number. This means that the expected number of

instances of a schema of below average fitness approaches zero, but never equals it. So

whilst the mean fitness of such schemata do increase according to (2.5), the proportion

of the population that they occupy dwindles to zero. But, since a GA cannot deal with

fractions of bit strings, what actually happens is that such schemata die out.

Nevertheless, if a schema is relatively common, and of near-average fitness or better,

then over a small number of generations equation (2.5) will accurately track the change

in mean fitness.

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 13

=
tn+1
m

∑m
i=1

(
ti
tm

)n+1

tnm
∑m

i=1

(
ti
tm

)n

=

tn+1
m

((
tm
tm

)n+1

+
∑m−1

i=1

(
ti
tm

)n+1
)

tnm

((
tm
tm

)n

+
∑m−1

i=1

(
ti
tm

)n)

= tm
1 +

∑m−1
i=1

(
ti
tm

)n+1

1 +
∑m−1

i=1

(
ti
tm

)n

∴ lim
n→∞

f(n) = tm

(As n tends to ∞, the sums tend to zero since each of the summed terms is

less than 1.) This proves that over time, any set of (positive) fitness values

will approach the value of the most-fit member.

2.3.5 Incorporating the Effects of Crossover and Mu-

tation

So far we have examined what happens to schemata in the absence of crossover

and mutation. Needless to say, any useful GA does have these things. In

this section, we incorporate the effects of both operations into our analysis

in order to derive Holland’s Schema theorem in full.

We shall only consider the negative effects of crossover and mutation—

that is, the ways in which their actions eliminate schemata—for the con-

structive effects are difficult to quantify. In doing so, we will produce a lower

bound on the chance that a schema will survive into the next generation. (If

a schema is said to “survive,” then at least one instance exists in the next

generation.)

We consider only single-point crossover, which refers to a form of crossover

involving two parent strings. Under single-point crossover, we pick a point

within the string a random, and form offspring by copying all the bits up

till that point from one parent and the remainder from the other. If single-

point crossover occurs with probability pc, then the chance that a schema

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 14

embedded within a string survives into the next generation is dependent on

its defining length, L(H). Specifically, the chance is 1 − pc
L(H)
l−1

, where l is

the length of the bit string.

The chance that mutation will destroy a schema is dependent on the

mutation rate, pm. A schema H of order O(H) will survive if none of the

positions at which it is defined (i.e., the non-wildcarded positions) are sub-

jected to mutation. The chance that a bit is not disrupted is 1 − pm and

hence the chance that a schema survives mutation is (1 − pm)O(H).

We can now add this information to equation (2.3) in order to produce

Holland’s Schema Theorem:

E(m′(H)) ≥
(

m(H)
f(H)

fµ

)(
1 − pc

L(H)

l − 1

)(
(1 − pm)O(H)

)
(2.6)

Because it only takes into account the destructive effects of crossover

and mutation, the Schema Theorem provides a lower bound on the expected

number instances of schema H that will survive into the next generation.

Note that the two right-most terms, which represent the probability that

a schema will be disrupted due to crossover and mutation respectively, are

inversely proportional to the length and order of the schema. This means

that schemata of long defining length and high order are more likely to be

disrupted than schemata of short defining length and low order. We shall see

later on that they are also more likely to be eliminated by stochastic effects

and noise.

2.3.6 The Implications of the Schema Theorem

The Schema Theorem captures a good deal of the dynamic behaviour exhib-

ited by GAs. (Missing are the constructive effects of crossover and mutation.

These are considered in Section 2.4.) Importantly, the Schema Theorem

makes it possible to analyse a GA’s behaviour at one level above that of in-

dividual bit strings, showing that schema of short defining length, low order,

and above average fitness will tend to increase in number.

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 15

But, Holland argues, there is more to the Schema Theorem than this.

By analogy to the Two-Armed Bandit problem, he claims that the Schema

Theorem constitutes a proof that under some conditions, the way in which

GAs “sample” schemata is optimal.

The Two-Armed Bandit Problem

The Two-Armed Bandit problem can be stated quite simply. Suppose we

have a two-armed slot machine where one arm pays either µ1 dollars (with

variance σ1) or µ2 dollars (with variance σ2), and the other pays µ1 at σ1 or

µ2 at σ2 (whatever’s left). We are then given some number of pulls on the

arms of the machine. (On every pull we have a choice of arm.) Given that

our object is to maximise the payoff, how should we allocate pulls?

This problem clearly involves making a choice between exploration and

exploitation. An optimal strategy might be to “explore” for some small

number of pulls, then allocate all the pulls that remain to the observed

best arm. But when should we stop “exploring”—searching for the best

arm, or making sure that the observed best really is the best—and start

“exploiting”—pulling exclusively on the observed best arm? The nature of

the problem is especially clear if we generalise the problem to a k-armed

bandit, where k is so large that trialling every arm is not feasible.

Holland found that for this problem, the optimal approach is to allocate

an exponentially increasing number of trials to the observed best arm. Here

lies the connection to the Schema Theorem, and the proof of the optimality

of GAs. As Holland (1975, p. 181) puts it: “schemata can be looked upon as

random variables . . . Under a genetic algorithm, a schema with an above-

average fitness in the population increases its proportion exponentially . . . If

we think of the genetic algorithm as generating samples of n random variables

(an n-armed bandit), in a search for the best, then this exponential increase is

just what Theorem 5.1 [which states the optimal strategy for the Two-Armed

Bandit] suggests it should be.”

A running GA can thus be considered to be playing a 3l-Armed Bandit,

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 16

where each schema represents an arm. The fitness of each schema (arm) rep-

resents a sample from a random variable. According to the Schema Theorem,

each schema receives an exponentially increasing (or decreasing) number of

pulls, an arrangement which, by analogy to Holland’s solution of the Two-

Armed Bandit problem, is optimal.

Objections

Holland relates the Two-Armed Bandit problem to GAs like this: (a) the

optimal solution to the Two-Armed Bandit Problem involves allocating an

exponentially-increasing number of trials to the observed-best arm; (b) a GA

allocates an exponentially-increasing number of trials to the observed-best

schema; therefore (c) there is a sense in which GAs are optimal. There are

two types of objection to this line of reasoning. First, complaints that his

analysis of the Two-Armed Bandit problem is not correct. Second, objections

to the analogy drawn between the Two-Armed Bandit problem and GAs.

As Wolpert and Macready (1996) point out, Holland only considers a

severely limited class of strategies in his analysis. He allocates an equal

number of trials to both arms; after a certain number of trials only the

arm with the better observed payoff is pulled. Under this regime, the only

decision to make is when to halt the “exploration” phase. (Holland’s answer

to this question leads, somewhat obscurely, to the conclusion that it is best

to allocate an exponentially-increasing number of trials to the observed best

arm.) If a more comprehensive class of strategies were considered, Wolpert

and Macready argue, a better solution might be found. Holland’s solution

also exhibits a number of irregularities. For example, the point at which

exploration is halted depends on the variance of one arm, but not the other.

But even if the optimal procedure is to allocate an exponentially increas-

ing number of trials to the observed best arm (without saying exactly how

many), the implications this has for GAs is not clear. Whilst GAs and the

Two-Armed Bandit problem are both in some way concerned with the prob-

lem of “how to allocate resources in the face of uncertainty” (Mitchell, 1996,

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 17

p. 122)—that is, the trade-off between exploration and exploitation—this

question is also an issue for just about any search procedure one cares to

name. To be similar in this one respect in not reason enough to think that

the solution to one is the solution to the other.

Also questionable is the claim that the generation-by-generation schema

fitnesses can be thought of as samples from the same random variable. At

generation zero, we can expect that for every schema, the set of bit strings

that match a particular schema will be uniformly distributed. But as Grefen-

stette and Baker (1989) showed, after just a few generations, this set can

exhibit a significant bias, which amounts to a change in the random variable

represented by the schema. In other words, they showed that it is entirely

possible for the fitness distribution governing a schema at generation zero to

be completely different to the distribution that governs it at generation fifty.

So even if schema fitnesses can be considered samples from some distribu-

tion, it seems that these distributions change over time, which amounts to

changing the payoffs of the arms.

The argument-from-analogy has other problems too. In the case of the

k-Armed Bandit, pulling an arm gives us information about the mean and

variance of that arm only. But a GA, by sampling one schema, say 1111*· · ·*,
can acquire information about the expected value of another, say 11111*· · ·*.
(They are not independent.) So there seems to be some aspect to GAs that

is not part of the Two-Armed Bandit problem. Another element that has no

obvious parallel is the way in which a GA transforms solutions via crossover

and mutation.

Finally, the argument only applies to fitness-proportional selection since

this is the basis of the Schema Theorem itself. Very early on other selection

schemes—schemes that do not allocate an exponentially-increasing number

of trial to the observed best schama—were found to provide superior results.

This again casts doubt on the supposed optimality of this approach.

Whilst the Schema Theorem goes a significant way toward capturing the

dynamics of a GA in motion, it seems premature to conclude that GAs are in

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 18

some way optimal. Nevertheless, the basic Schema Theorem stands, and con-

tinues to be cited with approval in the literature. For example, whilst noting

that the Schema Theorem is controversial, Banzhaf et al. (1998, p. 146) con-

clude that “the schema theorem remains the best starting point for a math-

ematically based analysis of the mechanisms at work in genetic algorithms

using crossover.” Recently, O’Reilly (1995), among others, has attempted to

adapt the Schema Theorem to systems of Genetic Programming.

Genetic Algorithms and Function Optimisation

When playing the Two-Armed Bandit, the aim is to maximise the money

won—there is no prize for doing such things as identifying the arm with the

highest payoff. Problems of this sort—where the way in which the search is

conducted is factored into the score—are said to have an “on-line” perfor-

mance metric.

Some have argued that because GAs are not explicitly trying to find

the optimal solution to a given problem, they don’t make good function

optimisers. For example, Mitchell (1996, p. 124) argues that the “goal” of a

GA is to “satisfice (find a solution that is good enough for one’s purposes)

rather than to optimize (find the best possible solution).”

It is certainly true that in some cases a GA will not be able to find the

optimal solution to a particular problem. Sometimes this will be because

insufficient selection pressure was applied, in which case it might be said

that the GA wasn’t “trying” to find the optimal solution. But it is also

possible that the GA is simply unable to find the solution. A GA can fail for

reasons other than a lack of trying. (And in any case, what if nothing but

the best is good enough?)

If the payoff is high enough, and the number of pulls large enough, the

optimal solution to the k-Armed Bandit will involve searching through the

arms until the optimum is found. Similar pressure can be exerted on a GA,

but this provides no guarantee that the optimum will be found.

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 19

2.4 The Building Block Hypothesis

The Schema Theorem describes (in lower bound), how the frequencies of

schemata already present in the population change over time. So if schema H

exists, then the Schema Theorem can be used to estimate how many instances

of H will exist in the next generation. However, it says absolutely nothing

about what schemata might come to exist. In other words, the Schema

Theorem cannot be used to determine what points in the search space will

be considered in the next generation (or even how many new points will be

considered), much less the chance that a solution will be reached within a

certain number of generations. This is a significant shortcoming.

How schemata are created is an important topic to understand. For any

non-trivial problem (and indeed, most trivial ones), the optimal bit string

will not be present in the initial population. It must somehow be cobbled

together from bits of other strings in the population. To put it another way,

how does it come to pass that the short, low-order, and highly fit schemata

favoured by the Schema Theorem come to be formed into the long, high-

order, and ever-fitter schemata that comprise an optimal solution? A loose

answer is provided by the Building Block Hypothesis.

2.4.1 What is the Building Block Hypothesis?

The Building Block Hypothesis is made up of two complementary parts.

The first is the claim that (a) solutions to problems are decomposable into

discrete parts, and (b) each of the parts will record a higher fitness than the

parts of non-solutions. The second is the claim that GAs are (a) capable

of identifying these parts and (b) able to assemble them into a solution.

In short, the Building Block Hypothesis says that GAs can both find the

“building blocks” that make up solutions, and put them together.

When expressed in terms as vague as these—as it commonly is (see

Grefenstette (1993, p. 79) for examples)—it is not very difficult to prove

the Building Block Hypothesis true. If the optimal bit string is not in the

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 20

initial population, then it must have been produced by crossover and/or mu-

tation. If crossover, then we can justifiably say that each parent contributes

a “building block.” If mutation, then in all probability only a few bits were

flipped, again leading to the conclusion that what we had previously were

“building blocks.”

The Building Block Hypothesis as stated above is not much use as it is.

Too much is left unspecified: How can building blocks be identified? How

long are they? Can they be distinguished from non-building blocks by way

of their fitness and/or frequency? If all schemata are treated equally under

the Schema Theorem, why are building blocks favoured, at least initially?

How are they put together? Are some combinations more likely that others?

How could you prove the Building Block Hypothesis true, or prove it false?

Grefenstette (1993) noticed that although the BBH was often loosely

defined in the papers dealing with it, it was later invoked in a way that

suggested that a much stricter definition was meant. This led Grefenstette

to define a Static Building Block Hypothesis, which he describes as “an

assumption” that “appears to underlie much of the recent published work in

GA theory”:

Static Building Block Hypothesis (SBBH) Given any short,

low-order hyperplane partition, a GA is expected to converge to

the hyperplane [schema] with the best static average fitness (the

“expected winner”). (Grefenstette, 1993, p. 78)

(The “static average” of a schema is the mean fitness of every matching bit

string, not just those in the population.) This definition is still not explicit,

but it is more precise than the one we had. Importantly, and in contrast with

the BBH, the SBBH makes clear predictions about what schemata are likely

to form, and what schemata are not likely to form. In particular, it predicts

that problems are likely to be hard if schemata with high static fitnesses do

not match the optimal bit string.

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 21

2.4.2 The Static Building Block Hypothesis

The SBBH typically comes up in studies of deception—or, more generally, the

study of which problems GAs find hard. To be true, the hypothesis requires

that there be a correlation between the static and observed fitnesses, since

it is the observed fitness that counts. Whilst it is likely that some degree

of correlation exists, this is not guaranteed, and it is also possible that the

correlation will be weak. (See Section 2.3.6.)

Grefenstette (1993) showed that the SBBH was wrong via two counter-

examples. The first was a problem that could be solved even though the

SBBH predicted that it couldn’t, and the second was a problem that couldn’t

be solved even though the SBBH predicted that it could.

The fitness function of his first example is

f(x1, x2) =

{
x2

1 + 10x2
2 if x2 < 0.995

2(1 − x1)
2 + 10x2

2 if x2 ≥ 0.995

Here, x1 and x2 are encoded as bit string of length 10, where 0 ≤ xi ≤ 1.

The optimal solution is (x1, x2) = (0, 1), which corresponds the bit string

00000000001111111111. Because the fitness of 99.5% of the search space

is determined by the first equation, in every schema partition defined over

the first 10 positions, the schema with the highest static fitness is made up

entirely of 1s. Despite this, Grefenstette reports that a standard GA has no

trouble finding the correct solution, because once the second 10 bits have

converged to x2 = 1, “the observed fitness of schemas representing values of

x1 near 0 will change from low to high, and the GA will converge toward

the global optimum” (Grefenstette, 1993, p. 82). As Grefenstette notes, this

change in behaviour is predicted by the Schema Theorem, but not by the

SBBH. The SBBH is not an extension of the Schema Theorem; it acts in

opposition to it.

Grefenstette’s second example has a fitness function of

f(x) =

{
x2 if x 6= 0

211 if x = 0

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 22

where x is represented by a bit string of length 10, as before. This fitness

function has a maximum at x = 0. The fitness at this point is so much greater

than the fitness at any other, that—across all schema partitions—the schema

with the highest fitness always contains the optimum. Despite this, GAs find

this problem impossible. Even though the mean fitness provides the right

hint, at every other point the fitness is misleading, and the GA is led away

from the global optimum.

Though something like “building blocks” must form within the popula-

tion over the course of a run—the solutions that are often found cannot be

conjured from nothing, and for crossover and mutation to have aided the

process solutions must be decomposeable into constituent parts—the Build-

ing Block Hypothesis does not constitute an adequate explanation of this

process.

2.5 The Two-Way Onemax Problem

Neither the Schema Theorem nor the Building Block Hypothesis provides a

very good account of what goes on inside a GA. In this section, we study

one problem GAs find difficult to solve; in doing so, we hope to provide some

feeling for the dynamics involved (the moves a GA does and doesn’t make,

and why). The example also serves to raise some questions about the utility

of EAs in general.

2.5.1 Description

The (one-way) Onemax problem is to maximise the number of 1s in a bit

string. (For this reason, it is sometimes known as the “bit-counting” prob-

lem.) The fitness function is usually linear in the number of bits equal to 1

such that the fitness of a given string is equal to the proportion of bits that

are equal to 1:

f1MAX(s) =

∑l
i=1 bit(s, i)

l

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 23

where l is the length of the bit string, and bit(s, i) is the ith bit of string s.

GAs find it very easy to find the optimal solution to the Onemax problem.

The Two-Way Onemax problem is only slightly different. If we define

f ′
1MAX(s, a, k) =

∑a+k−1
i=a bit(s, i)

k
for k > 0

such that f1MAX(s, a, k) is the proportion of ones in s between the locations a

and a + k, then the Two-Way Onemax fitness function is

f2MAX(s, a, k) =

{
0.9 × f ′

1MAX(s, 2, k) if bit(s, 1) = 0

f ′
1MAX(s, 2k + 1, k)2 otherwise

(2.7)

The Two-Way Onemax function conceptually involves a bit string di-

vided into two equal sections, plus a special “switch” bit. If the switch bit

is 0, then the fitness is 0.9 × f ′
1MAX(s, 2, k), and so is entirely dependent on

the content of the first section. If the switch bit is 1, then the fitness is

f ′
1MAX(s, 2k + 1, k)2 and so is entirely dependent on the content of the second

section. The function has a maximum of 1.0, which is achieved by any in-

stance of the schema 1*· · ·*1· · ·1. (A single 1, followed by k *’s, followed by

k 1’s.) On the other hand, the schema 0*· · ·* has a maximum fitness of 0.9.

GAs find this problem very difficult to solve. Initially, a bit string begin-

ning with 0 (with half the bits set to 1) will have a fitness of 0.45, whilst a

bit string beginning with 1 will have a fitness of 0.25. This gives the schema

0*· · ·* has higher fitness than 1*· · ·*, and so instances of 1*· · ·* are quickly

driven out of the population, even though the optimum is only attained if

the first bit is 1. If k is small, a GA may be able to find the optimal solution

if a near-solution can be found in the initial population. But as the length

of the bit string increases, this becomes less and less likely, and the optimal

solution becomes harder and harder to find.

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 24

2.5.2 Significance

The Two-Way Onemax problem is one that cannot5 be solved by standard

GAs. This is despite the fact that the standard Onemax problem is trivial to

solve: though there is only one optimal string (out of 2l possible strings), the

search space is smooth, and well-suited to the sort of transformations carried

out by (in particular) crossover. However, the Two-Way Onemax problem—

the product of an apparently minor addition—is extremely difficult. The

GA is misled early on, and once the “switching bit” becomes fixed in the

population, the GA becomes caught in a local maxima from which it is

unable to escape.

It is interesting exercise to try to come up with mechanisms that would

allow the GA to escape this fate. The usual remedy is some sort of diversity

maintenance scheme, but in this case, it is difficult to see how such a scheme

could help. The problem manifests itself at the level of a single bit; it is

difficult to see how problems that occur at this level can be side-stepped.

(For example, it is not possible to sub-divide the population into 2l sub-

populations, one for each of the two values each bit can take.)

As we have seen, the Schema Theorem (but not so much the Building

Block Hypothesis) tells us something about the dynamic behaviour of GAs.

The Two-Way Onemax problem adds another pebble to our store of infor-

mation: it shows us that whatever route the GA takes through the search

space, the route has a particular bias that causes it to miss certain opportu-

nities, and ultimately, solutions.

5We say “cannot” even though any GA that includes mutation can, in principle, find the

optimal solution to any problem. (Given enough time, every bit string will be sampled.)

But this is a monkeys-typing-Shakespeare argument that is of no practical value. To all

intents and purposes, this is a problem GAs cannot solve.

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 25

2.6 Obstacles

In the introduction we said that EAs appear to hold great promise. They

are based on and inspired by a system whose power is self-evident, and the

results obtained so far have been encouraging, or at least have lent themselves

to such an interpretation. Banzhaf et al. (1998, p. 4), for example, hope that

one day Genetic Programming (GP) will take the job of human programmers:

“The ability to enable computers to learn to program themselves is of the

utmost importance in freeing the computer industry and the computer user

from code that is obsolete before it is released.”

We do not believe that EAs will become as successful as is hoped. The

previous section provided one reason for thinking this way: if problems like

the Two-Way Onemax problem can be so difficult, harder problems can

only be more so. In this section, we give two additional reasons for our lack

of confidence: “fitness” does not measure the quantity we want to measure;

and preadaptation, though probably essential if we are to solve non-trivial

problems, is largely impossible to achieve.

2.6.1 Fitness and Hard Problems

An individual’s fitness is a measure of how good a solution that particular

individual is. (That is, a measure of how “fit” it is.) For example, a lawn

mowing program that manages to cover half the lawn might score 0.5; one

that covers 40% of the lawn might score 0.4. (Note that fitness values are

not necessarily ratio values. In general all one can say is that an individual

with a fitness of 0.5 is better than an individual with a fitness of 0.4, but not

that it is 25% better.)

In general terms, a GA works by repeatedly transforming a population of

individuals into populations of successively fitter and fitter individuals until

an admissible solution is found. At each generation, high-fitness individuals

are chosen to be parents, under the assumption that the children of high-

fitness individuals will be of higher fitness than the children of low-fitness

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 26

parents.

It is probably true that there is a hereditary component to fitness. How-

ever, the approach makes another assumption that is not so likely to be

true: that high-fitness individuals are “closest” (in terms of the number of

transformations required—crossovers, mutations, etc.) to the admissible so-

lution. In other words, GAs assume that if we are looking for an individual

of fitness 1.0, an individual of fitness 0.5 is a better starting point than one

of fitness 0.4. This reasoning will not always be correct. A local maxima,

for example, is a point that appears to be more promising than any of its

neighbours (it is more fit than they) without actually being so.

In other words, fitness is used as if it measured the distance to solution

(i.e., as if it were a search heuristic) even though it actually measures the

goodness of solution. (Despite general ignorance of the distinction, the substi-

tution usually turns out to be a matter of necessity not choice: it is extremely

difficult to calculate the distance between one point in the search space and

another.) If this arrangement is to be effective, there must be a strong nega-

tive correlation between the two metrics. (As fitness increases, the distance

must decrease.) For many problems there is such a correlation—in the case

of the Onemax problem, for example, there is a perfect correlation between

the two—but no such correlation is required to exist, nor is it required to

be strong. If goodness of solution is not a good estimate of distance to so-

lution, then the GA can easily find itself in the search space equivalent of a

cul-de-sac.

We contend that as problems get harder, fitness provides less and less use-

ful guidance, because the disparity between it and the distance to solution

becomes greater. Performance is far easier to measure than potential per-

formance. Performance can often be measured directly: how much dust the

vacuum collected, how many cities were visited, how much silicon was used.

The potential—how an individual’s child’s child’s child will perform—is more

difficult to measure.

On test functions where the global optimum is known, the Hamming dis-

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 27

tance between a point and the optimum can be used to estimate distance to

solution. This approach was taken by Jones and Forrest (1995), who calcu-

lated the correlation between fitness and (Hamming) distance for a number

of common test functions. They found that their Fitness Distance Correla-

tion (FDC) was often able to predict how a GA would perform, classifying

“easy deceptive problems as easy and difficult non-deceptive problems as

difficult” (Jones and Forrest, 1995, p. 184). This result supports our argu-

ment that difficult problems are those where the correlation between the two

metrics is weak.

(Note that fitness is one aspect of EAs that has no natural analogue.6)

2.6.2 Preadaptation

A preadaptation is “a feature that fortuitously serves a new function” (Fu-

tuyma, 1998, p. 355). In nature, it often happens that a feature designed for

one purpose turns out to be useful for another. For example, the kea, a bird

indigenous to New Zealand, has a strong, sharp, beak that enables it to feed

on fruits and seeds. Though this beak evolved to serve one specific purpose,

it proved useful for another: when sheep were introduced to the country, the

kea found that it was able to use its beak to pierce the skin on their backs,

giving it direct access to the fat underneath. (From Futuyma, 1998, p. 355.)

Preadaptation occurs when a feature that originally arose to do job A

comes to do a completely different job B. Jobs A and B can be quite different:

Many of the proteins in the eye lens, for example, begin their

careers doing something completely different and unrelated to

vision. . . . My current favorite example (of many available) is the

discovery that a gene complex originally involved in specifying the

pattern of segmentation in insects has now been found to assist in

6Biologists do refer to “fitness,” but they mean a different thing by it. To a biolo-

gist, an individual’s fitness is its actual contribution to the population, not the expected

contribution.

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 28

the proper development of the vertebrate hindbrain (a structure

that has no counterpart in segmented insects). (Dorit, 1997)

If dimension-jumping preadaptions such as these are both indispensable

and common, EAs are in for some trouble. Suppose that the only way to

evolve a bird that eats fat from the backs of sheep (job A) is to first evolve

a bird that can eat seeds (job B). Under this scenario, an EA employing a

fitness function that scores individuals according to their skill at doing job

A may never be able to evolve an individual to do this job. Only if the

fitness function rewards the right intermediate step will an individual evolve

to do job B, from where it can reach A. The problem is that the correct

intermediate step is not known.

One hypothesised example of preadaptation is particularly relevant to the

efforts being made to solve human-level problems with EAs: Calvin (1994,

p. 79) argues that “language, foresight, musical skills and other hallmarks

of intelligence are connected through an underlying facility that enhances

rapid movements.” In other words, it was initially the facility to plan bal-

listic movements (hammering, clubbing, throwing, etc.) that was selected

for. Later, he says, the planning skills required to perform and execute these

actions became the basis for language and intelligence. If Calvin is correct

(and if this is the only way in which intelligence can evolve), it might be that

in order to evolve a chess-playing program, we first need to evolve a program

that can throw rocks at lions. Then, only once rock-throwing has been mas-

tered, is the fitness function changed to measure chess playing prowess, with

the result that a chess-playing program ultimately evolves. But it is diffi-

cult to imagine a fitness function that could anticipate and negotiate such a

circuitous route.

The problem preadaptation poses for EAs is that: (a) it seems likely that

many useful structures arose via this mechanism; (b) it follows that artifi-

cial systems would exhibit similar behaviour; and (c) there is no analogous

process in EAs, nor can there be.

Note that a close relative of EAs—systems that implement “artificial life”

CHAPTER 2. EVOLUTIONARY ALGORITHM DYNAMICS 29

(A-life systems) via an evolutionary approach—do permit preadaptation. To

describe them briefly: in basic operation, they operate much the same as

EAs—there are individuals, there are generations, there are operations like

crossover and mutation, etc. However, there is usually some sort of interac-

tion between individuals, and the individuals live in—and have to interact

with—a particular “environment.” Moreover (and this is the big and crucial

difference), there is no fitness function. Instead, individuals prosper or perish

according to the success of their interactions with other individuals and their

environment: survival is all that counts. Since there are usually many more

ways to survive than there are ways to satisfy a fitness function, A-life sys-

tems would seem to support the sorts of evolutionary side-steps that result

in preadaptations. However, without an explicit fitness function, the system

can’t readily be coerced into solving any one problem, with the result that

A-life systems cannot easily be used in the situations EAs are intended for.

Chapter 3

Selection

3.1 Introduction

An EA repeatedly performs three distinct operations: fitness evaluation, se-

lection, and reproduction. First, it calculates the fitness of every member

of the population. Second (by looking at fitness only), it determines which

individuals will reproduce, and how many times they will be allowed to re-

produce. Third, it generates a new population by crossing over and mutating

the selected individuals.

The second step—deciding which individuals reproduce—is performed

by the selection scheme (or selection function). The aim is to identify those

individuals that are most likely to yield individuals of ever-higher fitness. If

there is a positive correlation between the fitness of parents and that of their

offspring,1 then (broadly speaking) the selection scheme needs to serve up

individuals of high fitness.

Since it deals with fitness only—a single real value—selection schemes

stand completely independent of the remainder of the EA. This makes selec-

tion a particularly rewarding topic of study, since any results obtained can

immediately be put to use across the entire range of EAs.

1If there is not, then performing fitness-based selection makes no sense; random search

would be just as good.

30

CHAPTER 3. SELECTION 31

We will attempt to describe the desirable properties of selection schemes

later; we next provide some examples of the many selections schemes that

have been developed, followed by some descriptive measures.

3.2 Some Selection Schemes

3.2.1 Fitness-Proportional Selection

Under fitness-proportional selection, the number of times each individual

reproduces is proportional to its fitness. If the population size is to remain

the same, then

pi =
fi

fµ

where pi is the probability of selecting an individual, fi is its fitness, and fµ

is the mean fitness.2

For about 15 years, fitness-proportional selection was the only sort of

selection used. This was so for two reasons: first, it seemed, intuitively, to

be the right thing to do, and second, it guaranteed that an exponentially-

increasing number of offspring be allocated to the fittest individual, as re-

quired by the Schema Theorem.

Fitness proportional selection has no parameters.

3.2.2 Fitness-Proportional Selection with Fitness Scal-

ing

This selection scheme is very similar to straight fitness-proportional selection.

Instead of objective fitness being used directly, it is first transformed by a

linear (or non-linear) function. This transformed fitness is then used as if

it were the actual fitness. The transformation function is used to either

2Fitness-proportional selection is also known as roulette-wheel selection, as its way of

allocating offspring is identical to that obtained by selecting individuals on the basis of

spinning a roulette wheel divided into segments representing individuals where the size of

each segment is proportional to the individual’s objective fitness.

CHAPTER 3. SELECTION 32

emphasize (or de-emphasize) differences in objective fitness. Although any

function will do, it is not likely to be very useful unless it is monotonically

increasing, such that the fittest individual receives the most offspring.

One common technique is “sigma scaling,” which incorporates informa-

tion about the population mean and variance. An example of sigma scaling

is

pi =
1

N

(
1 +

fi − fµ

2σ

)
where pi is the probability that individual i will be selected, fi is its fitness,

fµ is the mean fitness of the population, σ is the variance, and N is size of

the population. This function allocates 1.5 offspring to individuals whose

fitness is one standard deviation above the mean.

3.2.3 Rank Selection

In rank selection, individuals are first sorted according to their objective

fitness. Their objective fitnesses are then discarded, and rank alone is used to

determine how many times each individual gets to reproduce. Rank selection

requires a function that maps ranks to expected offspring counts. Again, the

function employed can be almost anything. Banzhaf et al. (1998, p. 132) give

two examples. A linear function:

pi =
1

N

(
η− + (η+ − η−)

i − 1

N − 1

)
(3.1)

where i is the individual’s rank, η−/N is the probability of the worst indi-

vidual being selection, and η+/N the probability of the best individual being

selected. For the population size to stay constant, η− + η+ = 2 must hold.

And an exponential function:

pi =
c − 1

cN − 1
cN − i

where 0 < c < 1.

CHAPTER 3. SELECTION 33

3.2.4 Truncation Selection

To perform truncation selection, the individuals are first ranked in order

of fitness. Only the TN best individuals are allowed to reproduce, where

0 < T ≤ 1 and N is the population size. The chosen individuals mate

randomly, with each having an equal chance of being selected. This scheme

mimics the breeding technique employed by, for example, plant breeders.

3.2.5 Tournament Selection

Tournament selection is a two-step process that involves first, randomly se-

lecting a small number of individuals, t, (typically less than ten) and second,

finding the fittest of this subset. Tournament selection lends itself to parallel

implementations since it requires no global tallying.

3.2.6 Minimising the Stochastic Error

Baker (1987, p. 14) observed that selection is often performed in two stages:

“(1) determination of the individuals’ expected values; and (2) conversion

of the expected values to discrete numbers of offspring.” The first three

selection schemes described are of this type: for each rank, they prescribe

expected values. (Although they do not say how the expected values should

be converted into actual offspring counts.)

It is the job of the first stage to establish that, for example, one particular

individual should expect to get 3.6 offspring in this generation, that another

should get 0.3, and so on. That is, the first stage defines a probability

distribution. The second stage samples from this probability distribution, in

this case resolving, in the first instance, the impossibility of 0.6 children by

deciding if this particular individual should actually have 3, or 4, or some

other number of offspring this generation. The second stage is thus concerned

with the “stochastic error” made whilst sampling.

Baker proposed that the sampling algorithm should be evaluated accord-

ing to three criteria:

CHAPTER 3. SELECTION 34

bias “the absolute difference between an individual’s actual sampling prob-

ability and his expected value.”

spread the difference between the minimum and maximum possible off-

spring counts allocated to each individual. “Minimum spread” is de-

fined as the “smallest possible spread which theoretically permits zero

bias.” That is, a spread of [bvc, dve], where v is the expected number

of offspring. Spread is related to the offspring count variance.

efficiency the sampling algorithm should not increase the GAs overall time

complexity.

Goldberg (1989, p. 115ff.) surveys some different sampling algorithms.

Most work by initially allocating to each individual the whole number of off-

spring that they are due. They then play around with the fractional parts. As

Baker (1987, p. 14) observed, all of these methods “fail to provide both zero

bias and Minimum Spread.” This led him to develop Stochastic Universal

Sampling (SUS), a method that overcame these deficiencies.3

Baker’s algorithm is both simple and efficient. Given a set of n individuals

and their associated expected values, SUS effectively arranges them on a

roulette wheel, where the size of each slice is proportional to the expected

value (as with roulette-wheel selection). Next, a second wheel marked with

n equally spaced pointers is placed over the first, which is then spun. The

pointers then indicate which individuals are to reproduce, and the number

of times they are allowed to do so. This approach yields the sought-after

characteristics of minimum spread and zero bias since no less than bvc and

no more than dve pointers can fall over a slice of size v.

3I am unable to explain why Goldberg’s book, published in 1989, discusses the problems

with existing sampling algorithms, but does not address Baker’s 1987 solution. Baker’s

paper does appear in the Bibliography, but I am unable to find where in the book it is

cited. It does not appear to be mentioned in any of the sections relevant to selection.

CHAPTER 3. SELECTION 35

3.3 Characterising Selection Schemes

Several different selection schemes are described above. They all perform

the same function—allocating offspring to individuals—but they have quite

different ways of doing so, and have quite different effects. In this section,

we present some of the work that has gone into quantifying these differences.

Over the last decade, significant contributions have been made by Gold-

berg and Deb (1991) and Bäck (1994), but the most authoritative and com-

prehensive results are those of Blickle and Thiele (1997). The following

section rests heavily on their work.

Initially, selection schemes were compared by means of the effect they

had on a population made up of one more-fit individual mixed in amongst

many (equally) less-fit ones. The principal measure was takeover time, which

was the number of generations required for the population to converge on

(descendants of) the more-fit individual. Goldberg and Deb (1991) list the

takeover times of several different selection schemes.

This fairly crude approach has recently been superseded by measures

that describe the way in which selection schemes transform a population of

normally-distributed fitnesses. (This approach has been used by population

geneticists for more than 30 years—see, for example, Crow and Kimura (1970,

p. 225).) As well as being a more realistic model of the fitness distribution,

it also allows for a wider variety of descriptive measures.

Three measures are described here: reproduction rate, selection intensity,

and loss of diversity. Between them they capture a great deal of how an EA

responds to selection. They can only be generated for the rank-based selec-

tion schemes (tournament, truncation and ranking), but as these approaches

now dominate, this is not a serious shortcoming.

3.3.1 Reproduction Rate

The reproduction rate is the ratio of the number of individuals with a certain

fitness value before and after selection. That is, the expected number of

CHAPTER 3. SELECTION 36

offspring born to an individual of a certain fitness (or rank). The graph of

reproduction rate versus fitness (or rank) is known as the selection profile.

Table 3.1 gives the reproduction rate of three selection schemes (after Blickle

and Thiele, 1997, p. 56); the corresponding selection profiles are plotted in

Figures 3.1, 3.2, and 3.3.

Selection Method Reproduction Rate

Tournament RT (t, r) = N

((
N − r + 1

N

)t

−
(

N − r

N

)t
)

Truncation RΓ(T, r) =

{
0 if r > TN

1/T otherwise

Linear Ranking RR(η−, r) =
Nη− − 1

N − 1
+

1 − η−

N − 1
(2(N − r) − 1)

Table 3.1: Reproduction rate of three different selection schemes. N is the

size of the population, r is the rank (1 ≤ r ≤ N , 1 is best), t the tournament

size, T the proportion of individuals that get to reproduce, and η−/N is the

probability that the worst individual will be selected.

3.3.2 Selection Intensity and Variance

Selection intensity is the expected change in mean fitness from one genera-

tion to the next. A normally-distributed population of fitnesses, N(0, 1), is

used for comparison purposes. Table 3.2 lists the selection intensity of three

different selection methods (from Blickle and Thiele, 1997, p. 62), and Ta-

ble 3.3 the corresponding post-selection fitness distribution variance. (The

variance is 1 before selection.)

3.3.3 Loss of Diversity

Loss of diversity is simply the number of individuals that do not get to

reproduce, or equivalently, the proportion of individuals not picked during

CHAPTER 3. SELECTION 37

7
5
2

(Normalised) Rank

R
ep

ro
d
u
ct

io
n

R
at

e

1.00.80.60.40.20.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0

Figure 3.1: Tournament Selection selection profile, for different values of t.

N is “large”; for typical values of N (N > 50), the difference is less than 5%.

Fitness increases as rank does.

Selection Method Selection Intensity

Tournament IT (t) =
√

2(ln t − ln(
√

4.14 ln t))

Truncation IΓ(T) =
1

T

1√
2π

exp(−f 2
c /2)

Linear Ranking IR(η−) =
1 − η−
√

π

Table 3.2: Selection intensity of three different selection schemes. fc is de-

termined by T =
∫ ∞

fc

1√
2π

exp(−f2/2) df . For tournament selection the result

is an approximation.

CHAPTER 3. SELECTION 38

0.75
0.50
0.25

(Normalised) Rank

R
ep

ro
d
u
ct

io
n

R
at

e

1.00.80.60.40.20.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0

Figure 3.2: Truncation Selection selection profile, for different values of T .

N is “large”; for typical values of N (N > 50), the difference is less than 5%.

Fitness increases as rank does.

Selection Method Selection Variance

Tournament ΦT (t) =
0.918

ln(1.186 + 1.328t)

Truncation ΦΓ(T) = 1 − IΓ(T)(IΓ(T) − fc)

Linear Ranking ΦR(η−) = 1 − IR(η−)2

Table 3.3: Selection Variance. For tournament selection the result is an

approximation.

CHAPTER 3. SELECTION 39

0.75
0.50
0.25

(Normalised) Rank

R
ep

ro
d
u
ct

io
n

R
at

e

1.00.80.60.40.20.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0

Figure 3.3: Linear Ranking selection profile, for different values of η−/N . N

is “large”; for typical values of N (N > 50), the difference is less than 5%.

Fitness increases as rank does.

CHAPTER 3. SELECTION 40

the selection phase. The amount of diversity lost is related to the selection

intensity—as selection intensity increases, it becomes more and more difficult

to become a parent. Table 3.4 lists the loss of diversity for three different

selection schemes (from Blickle and Thiele, 1997, p. 65). Note that this

measure is independent of the fitness distribution.

Selection Method Loss of Diversity

Tournament DT (t) = t−
1

t−1 − t−
t

t−1

Truncation DΓ(T) = 1 − T

Linear Ranking DR(η−) =
1 − η−

4

Table 3.4: Loss of diversity of three different selection schemes.

3.3.4 Graphs of Selection Schemes

The selection intensity, selection variance and loss of diversity for each the

three selection schemes for which they have been calculated have been plot-

ted below: tournament selection in Figure 3.4, truncation selection in Fig-

ure 3.5 and linear ranking in Figure 3.6. Note that tournament selection

is “backwards”: selection intensity decreases toward the right, in contrast

to the other two schemes where selection intensity increases as the relevant

parameter does.

Linear ranking selection is not capable of exerting much selection pressure:

the most selection intensity it can muster is only slightly more than 0.5. For

the same selection intensity, truncation selection exhibits a greater loss of

diversity, and a lower variance than tournament and ranking selection. There

is no obvious relationship between selection intensity, selection variance, and

loss of diversity.

CHAPTER 3. SELECTION 41

loss of diversity
selection variance
selection intensity

t
302520151050

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Figure 3.4: Tournament Selection. t is the tournament size.

loss of diversity
selection variance
selection intensity

T

1.00.90.80.70.60.50.40.30.20.10.0

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Figure 3.5: Truncation Selection. T is the proportion allowed to breed.

CHAPTER 3. SELECTION 42

loss of diversity
selection variance
selection intensity

η−
1.00.90.80.70.60.50.40.30.20.10.0

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Figure 3.6: Linear Ranking Selection. η−/N is the probability that the worst

individual will be selected.

3.4 Choosing a Selection Scheme

For any given problem, how do we decide which selection scheme to use?

This question is often answered with a discussion that begins and ends with

the observation that both too much, and too little selection pressure is bad:

too much pressure produces too high a rate of convergence, potentially caus-

ing the population to converge on the wrong region of the search space, and

too little produces too low a rate of converge such that the solution may

never be found. For example, Goldberg and Deb (1991, p. 87) say that the

right approach “might be to slow down convergence enough so that errors

are rarely made” (p. 88) or it might be to ensure “very high growth ratios . . .

by grabbing those building blocks you can get as fast as you can, thereafter

restoring the missing building blocks through mutation.” (p. 88). They con-

clude: “The question [of which selection scheme should be used] is a difficult

one, and despite limited empirical success in using this method or that, a

general answer remains elusive.”

CHAPTER 3. SELECTION 43

Mitchell (1996, p. 166) writes: “Below I will describe some of the most

common methods . . . these descriptions do not provide rigorous guidelines

for which method should be used for which problem; this is still an open

question for GAs.” Banzhaf et al. (1998, p. 129–130) rightly say that “the

method of selection to be applied under particular circumstances is one of the

most important decisions to be made in a GP run,” but then go on to pro-

vide no guidance at all to those facing this decision, aside from very weakly

recommending tournament selection, primarily because it is easy to imple-

ment: “Tournament selection has recently become a mainstream method for

selection, mainly because it does not require a centralized fitness comparison

between all individuals. . . . With fitness-proportional selection, the com-

munication overhead between evaluations would be rather large.” (Banzhaf

et al., 1998, p. 133)

Though much work has gone into devising and characterising selection

schemes, no-one knows when one selection scheme is to be preferred over

another: nothing seems to guide practitioners as much as trial and error. We

do not even know if it is beneficial for the sampling algorithm to exhibit zero

bias and (more suspiciously) minimum spread, as Baker (1987) baldly states.

(Sampling is discussed further in Section 4.2.)

Should the actual offspring count be as close as practicable to the ex-

pected count? Nature does not appear to support this hypothesis: in some

natural breeding groups, brood sizes vary wildly from one individual to an-

other, exhibiting much more variation than can easily be explained away by

differences of phenotype or behaviour. A more likely explanation for the

variance is that the correlation between genotype and reproductive success

is low such that chance plays a large part in determining which individual

becomes the (say) alpha male. If this is the case, we do not have a situation

of minimal spread.

Many of the selection schemes described above are really sets of selection

schemes since their behaviour varies according to the value of some parame-

ter. Bäck (1994, pp. 57–58) gives three desirable properties of such sets:

CHAPTER 3. SELECTION 44

1. “The impact of the control parameter(s) on selective pressure should

be simple and predictable.”

2. “One single control parameter for selective pressure is preferable.”

3. “The range of selective pressure that can be realized by varying the

control parameter should be as large as possible.”

These criteria are reasonable. However, whilst they give us reasons to

choose one set over another, they do not give us any reason to chose any one

member of the set over another.

Chapter 4

Selection Profiles

4.1 Introduction

About the only thing that selection schemes appear to have in common with

each other is their function, or behaviour. Selection schemes are passed a list

of individuals; they are required only to return a subset of that list to serve

as parents of the next generation. This is what defines a selection scheme—

nothing at all is said about how it must make its selections. (This is why

selection schemes are able to be, in terms of the way they make their selec-

tions, quite different from each other.) Nevertheless, despite their seemingly

dissimilar internals, every rank-based selection scheme is almost completely

described by its selection profile—a selection scheme can be thought of as

nothing but a function that maps ranks to offspring counts.1

There are two flavours of selection scheme: selection schemes with “mem-

ory” and selection schemes without. Memoryless selection schemes “select”

(return) one individual at a time, without any knowledge of previous selec-

tions. Because of this, memoryless schemes can be used to select a small

number of individuals at a time. Some EA systems—such as those employ-

1Selection schemes that directly use the fitness of an individual—rather than its rel-

ative ranking—cannot be represented in this way. We shall ignore such schemes for the

remainder of this chapter.

45

CHAPTER 4. SELECTION PROFILES 46

ing steady-state evolution, in which only a part of the population is replaced

at any one time—require a selection scheme with this ability. Tournament

selection is an example of a memoryless selection scheme.

In contrast, selection schemes with memory select an entire population

at once, knowing exactly which individuals have and haven’t been selected.

This approach gives much greater control over the selection process, at the

cost of some flexibility. Truncation selection is an example of a selection

scheme with memory.

Both types of selection scheme have a selection profile, since it is possi-

ble to calculate (or compute) the expected number of individuals allocated

to each rank under both. However, only memoryless selection schemes are

uniquely determined by their selection profile: two selection schemes possess-

ing memory may have the same selection profile, but differ in the variance of

the offspring count.

To illustrate, suppose one particular rank has an expected offspring count

of v. Under one selection scheme, it might turn out that the actual offspring

count can be modelled by an exponentially-distributed random variable; un-

der another, the actual count might be restricted to either bvc or dve. Such

variation is only possible, however, if the selection scheme has “memory”—

under a memoryless selection scheme, the variance is strictly a function of

the expected offspring count.

In this chapter we investigate and explore the idea that a selection scheme

is completely defined by two things: its selection profile and its variance (or

spread). As implied by the discussion above, this means that the study

does not consider (memoryless) selection schemes that are used to select

anything less than a full generation at a time; nor can it include non-rank-

based selection schemes. Fortunately this does not exclude the most popular

selection schemes. We first examine the role of spread in the success (or

otherwise) of selection schemes. Second, we use a meta GA to evolve selection

profiles in an attempt to discover which selection profiles suit which problems.

CHAPTER 4. SELECTION PROFILES 47

4.2 The Importance of Spread

4.2.1 Introduction

Figure 4.1 depicts the selections made by tournament selection (t = 5) on one

particular run. (Compare this to Figure 3.1, a graph of the analytic solution.)

It is clear that tournament selection does not exhibit minimal spread: though

the most fit individual is expected to have exactly 5 offspring, tournament

selection often gives it several more, or several less.2

Tournament selection is a popular and effective selection scheme. Is it

successful because of the level of spread it generates, or in spite of it? This

experiment provides an empirical answer to the question.

4.2.2 Method

Selection profiles map ranks to expected numbers of offspring. This figure

is a real number—at each generation, the expected number of offspring (a

real value) must be converted into the actual number of offspring (an integer

value) by a sampling algorithm. The sampling algorithm is allowed to dole

out whatever actual values it likes as long as the appropriate expected value

is maintained. Consequently, the sampling algorithm determines the variance

(and spread).

In this experiment, we shall compare three selection schemes: (1) star-

dard tournament selection; (2) a selection scheme based on the tournament

selection profile, but using with SUS sampling; and (3) a scheme based on

the tournament section profile, but using EXP sampling.

SUS sampling is explained in Section 3.2.6. Figure 4.2 shows the selec-

2In fact, tournament selection scores quite poorly on the minimal spread criterion. If

the entire population has exactly the same fitness, for example, then tournament selection

is equivalent to fitness proportional selection (or any other scheme that picks individuals

randomly, and with replacement). In turn, this means that only about 63% of the indi-

viduals will be selected to reproduce, since limN→∞(1 − (1/N))N = e−1 ≈ 0.37. (Under

minimal spread, each individual would be selected exactly once.)

CHAPTER 4. SELECTION PROFILES 48

(Normalised) Rank

O
ff
sp

ri
n
g

1.21.00.80.60.40.20.0-0.2

16

14

12

10

8

6

4

2

0

-2

Figure 4.1: Tournament selection: The selections made by tournament se-

lection (t = 5). The population size is 50; 300 runs are represented. Each

point represents the number of offspring an individual of a particular rank

happened to have on one specific run. (There are 300 sets of points, one for

each run.) A small amount of noise has been added to each of the points to

separate them. See also Figure 3.1, a graph of the analytic solution.

CHAPTER 4. SELECTION PROFILES 49

tions made by a tournament-based algorithm employing SUS as the sampling

algorithm. SUS produces very little variance.

(Normalised) Rank

O
ff
sp

ri
n
g

1.21.00.80.60.40.20.0-0.2

16

14

12

10

8

6

4

2

0

-2

Figure 4.2: Tournament/SUS selection: The selections made by a selection

scheme with the same selection profile as tournament selection, but with

SUS (Section 3.2.6) as the sampling algorithm. (See Figure 4.1 for further

details.)

EXP sampling generates (close to) exponentially distributed actual off-

spring counts. It is performed as follows. We start with an array of offspring

counts, where the value at index i is the expected number of offspring allo-

cated to the individual at rank i. Each offspring count is then replaced by

a sample from an exponentially-distribution random variable with the same

mean. After each rank’s count has been perturbed in this way, the sum is

found, and the counts are scaled such that the total is reset to whatever it

was previously. The resulting rank/offspring count array is passed to SUS,

which converts the array of (real) expected values into (integral) actual val-

ues. Figure 4.3 shows the selections made by the EXP sampling algorithm.

EXP sampling exhibits a large variance.

CHAPTER 4. SELECTION PROFILES 50

(Normalised) Rank

O
ff
sp

ri
n
g

1.21.00.80.60.40.20.0-0.2

16

14

12

10

8

6

4

2

0

-2

Figure 4.3: Tournament/EXP selection: The selections made by a selection

scheme with the same selection profile as tournament selection, but with

EXP as the sampling algorithm. Note that some points did not fit onto the

graph. (See Figure 4.1 for further details.)

CHAPTER 4. SELECTION PROFILES 51

4.2.3 Results and Discussion

The mean number of generations required to find the optimal solution for

several common test problems is shown in Table 4.1. On each occasion, tour-

nament and SUS selection recorded roughly equivalent figures (the difference

between the two was less than the standard error), whilst EXP proved slightly

less effective.

This experiment involved selection schemes with both extremely low and

extremely high variance. Little difference was observed between the two,

which suggests that the variance is largely irrelevant. We therefore cannot

conclude that minimal spread is a desirable property of selection schemes.

Problem Tournament SUS EXP

Onemaxa 10.600 (0.196) 10.460 (0.172) 11.560 (0.190)

DeJong3b 10.260 (0.176) 10.200 (0.178) 10.580 (0.198)

Royal Roadc 27.860 (3.100) 30.240 (3.118) 40.320 (3.614)

aSee Section 2.5.1—the genome is 50 bits long. Population = 100, crossover = single-

point (uniform), mutation = 0.01, runs = 50.
bVariant of DeJong’s third test function—10 real values are used instead of 5; see

Goldberg (1989, p. 108). Population = 100, crossover = Gaussian blend (Section 4.3.2),

runs = 50.
cVariant of Royal Road test function R1—32 bits are used instead of 64; see Forrest and

Mitchell (1993). Population = 128, crossover = single-point (uniform), mutation = 0.05,

runs = 50.

Table 4.1: The mean number of generations (standard error in parentheses)

required for three different selection schemes to find the optimal solution to

several different problems. Tournament selection was performed with t = 7;

SUS and EXP have an equivalent selection profile (but different variance).

This result seems to contradict Baker (1987) who argues that minimal

spread is a desirable property of selection schemes (Section 3.2.6). Baker

provides very little evidence for this claim, simply saying that “All of the

GAs’ theoretical support presupposes the ability to implement the intended

CHAPTER 4. SELECTION PROFILES 52

expected values” (Baker, 1987, p. 14). This statement is puzzling since the

theoretical support referred to can only be the Schema Theorem, and the

Schema Theorem is expressly defined in terms of expected values; it considers

the variance irrelevant.

A slavish devotion to the expected values is odd for other reasons too.

First, fitness itself (whence the expected values come) is subject to noise from

several sources: it is only an estimate of the value we want (Section 2.6.1)

and in addition, fitness functions are often non-deterministic. Second, it

bespeaks a strange prejudice against one source of randomness. GAs employ

random numbers almost everywhere. Why should selection not be random

too?

4.3 Evolving Selection Profiles

4.3.1 Introduction

A selection scheme is completely described by two things: its selection pro-

file,3 and its variance (spread). In the previous section, we demonstrated that

the variance does not appear to have much influence on the final outcome.

(At least if it is not extremely high.) Consequently, the selection profile on

its own can be considered an almost complete description of the selection

scheme. In turn, this means that we can mount a study of selection schemes

via their selection profiles.

A meta GA uses one GA (the outer GA) to control the parameters of

another (the inner GA). Meta GAs are often used to optimise parameters

3“Reproduction rate” and “selection profile” are practically synonymous terms, since

the selection profile is merely a graph of the reproduction rate. As terms relating to

selection schemes, however, we feel that the latter is preferable (at least for the purposes

of this section), since it prompts one to think of selection schemes in visual, rather than

symbolic terms. Selection is a simple process, even though selection schemes may be

described by a passel of symbols. Thinking of selection schemes as nothing more than

graphs restores some of their inherent simplicity.

CHAPTER 4. SELECTION PROFILES 53

such as population size and crossover and mutation rates (e.g., Grefenstette,

1986). In this section we use a meta GA to evolve selection profiles.

4.3.2 Method

Representation

Effective selection profiles are likely to be both relatively simple and smooth.

Indeed, we would be surprised if anything other than a monotonically in-

creasing selection profile (the higher the (normalised) rank, the higher the

offspring count) turned out to be the most effective. In addition, evolving

an approximation to such a function must rate as one of the easiest tasks

an EA has ever been set. Accordingly, we shall employ a very simple and

transparent representation.

We chose to represent the selection profile by a vector of (real) numbers,

~v = {v0, v1, . . ., vk}, where vi ≥ 0. The values are interpreted as the value

(“height”) of the selection profile at k equally-spaced points. (The least-fit

individual can expect to get v0 offspring, the most-fit vk, etc.) To gener-

ate intermediate values, we fit a straight line to the nearest two points and

interpolate.

The values that make up the vector are stored not as bit strings, but

“directly” as floating point numbers. We believe this is the most appropriate

way for a GA to encode real numbers (see Michalewicz, 1996; Salomon, 1996).

Genetic Operators

Since the selection profiles are not stored as bit strings, we cannot perturb

them via crossover and bit-flipping. Instead, we use a technique we call

Gaussian Blend.4 After selecting two parents, we end up with a pair of

values for each of the k elements of the vector. To reduce each pair to a single

number that in some way resembles both parents, we consider the values to be

samples drawn from a Gaussian distribution; sampling from this distribution

4Suggested by Lloyd Allison.

CHAPTER 4. SELECTION PROFILES 54

yields a single value suitable for the child. That is, the child’s value is drawn

from the Gaussian (normal) distribution N(µ, σ), where µ = (p1 + p2)/2,

σ = ((p1 − µ)2 + (p2 − µ)2)/2, and p1 and p2 are the parents’ values. Values

less than zero are clipped to zero.

This technique has three advantages: (1) it requires no parameters; (2)

crossover and mutation are combined in one operation; and (3) the rate of

mutation is proportional to the amount of variation present in the population

at the time. It also generalises to any number of parents, although in this

work only two parents were ever used.

Other Implementation Details

The meta GA has two levels: an outer GA and an inner GA. The outer GA

evolves the selection profiles. The fitness of selection profile P is defined to

be −1 times the number of generations needed for the inner GA to find the

solution when using a selection scheme derived from P . (−1 so that fewer

generations are better.) Sometimes the solution cannot be found within some

predefined maximum number of generations, m. (This could happen if the

selection profile likes to select individuals of low rank, for example.) In this

case, the fitness is −m minus the mean fitness of the inner GA’s population

at the time the run was aborted. This results in a ranking where “successful”

selection profiles come first (in order of speed), followed by “unsuccessful”

selection profiles (in order of mean fitness).

Each selection profile was represented by a vector of 9 real numbers, each

of which was initialised to an exponential random value with a mean of 10.

Each profile was then normalised so that the mean over [0, 1] was 1 (i.e.,

so that the integral over [0, 1] was 1). We used exponentially-distributed

random values rather than, say, normally-distributed values because the ex-

ponential distribution has a greater variance, which adds diversity to the

initial population.

The outer GA used tournament selection with a tournament size of 5

or 7 to select the selection profiles themselves. SUS sampling was used inside

CHAPTER 4. SELECTION PROFILES 55

the inner GA to generate actual offspring counts from the expected counts

provided by the selection profiles.

Brief preliminary experiments showed that a meta GA such as this,

employing the representation and genetic operators described above, was

able to converge on a target function within a small number of generations

(around 10) under a wide variety of initial conditions. (This is not surprising:

the task is trivial.) We can therefore be confident that the selection profiles

that evolve are close to the optimal selection profiles.

We found that a small population of around 30 individuals was ample; for

each experiment, we used as small a population as possible since the popula-

tion size is directly related to the number of fitness evaluations, and fitness

evaluation heavily dominates the running time. (In a randomly-generated

population of this size, about five selection profiles succeed in evolving a

solution to the problem set by the inner GA.) The outer GA was stopped

as soon as successive generations yielded no discernable improvement in the

mean fitness. This generally required around 15 generations.5

4.3.3 Experiment 1: Results and Discussion

In this experiment we evolved selection schemes over two different problems.

Figure 4.4 shows the selection profile evolved over the Onemax prob-

lem. It is (mostly) monotonically increasing, as expected, and allocates few

offspring to individuals ranked in the lower 80% of the population.

The evolved selection profiles required (on average) 19.76 generations to

find the optimal solution. This compares with a mean of 19.69 for standard

5The exact figure, here and elsewhere, is not important. For the most part we are

not interested in the exact shape of the evolved selection profile; we are interested in the

general shape (and the fact that it evolved at all). We do not claim that the evolved

selection profiles are optimal; we would not be surprised if—as is almost always the case

with GAs—different control parameters led to better performance. The purpose of this

chapter is to demonstrate the usefulness of the selection profile concept and to use it to

draw some general conclusions about the process of selection. See Koza (1992, p. 115–116)

for a similar argument.

CHAPTER 4. SELECTION PROFILES 56

(Normalised) Rank

R
ep

ro
d
u
ct

io
n

R
at

e

1.21.00.80.60.40.20.0-0.2

10

8

6

4

2

0

-2

Figure 4.4: Mean selection profile as evolved over the Onemax problem.

This graph depicts the selection profile vectors present in a population of

size 30 after 15 generations. 20 runs are represented. The selection vectors

were of length 9; each point represents one of the 9 values. (Noise has been

added to x-values of these points.)

CHAPTER 4. SELECTION PROFILES 57

tournament selection (t = 6). The difference is well within one standard

error.

The selection intensity of the mean selection profile is 1.156, the selec-

tion variance is 0.743, and the loss of diversity is 0.534. (Recall that the

pre-selection mean is 0, and the variance 1.) These were determined exper-

imentally, by performing selection on a population of normally-distributed

fitnesses.

Figure 4.5 shows the selection profile evolved on the Lawnmower Problem

(Koza, 1994, Chapter 8), a problem where “the goal is to find a program for

controlling the movement of a lawnmower so that the lawnmower cuts all

the grass in the yard” (Koza, 1994, p. 226). This problem involves evolving

programs, not bit strings, and is significantly more complex than Onemax.

The ADF-enabled 8-by-8 version of the problem was used, as implemented

by lilgp.6

(Normalised) Rank

R
ep

ro
d
u
ct

io
n

R
at

e

1.21.00.80.60.40.20.0-0.2

10

8

6

4

2

0

-2

Figure 4.5: Selection profile evolved over the Lawnmower problem. 32 runs

are represented. Refer to Figure 4.4 for further details.

6http://garage.cps.msu.edu/software/lil-gp/

CHAPTER 4. SELECTION PROFILES 58

The evolved selection profiles required (on average) 13.56 generations to

find the optimal solution. This compares with a mean of 13.25 for standard

tournament selection (t = 6). The difference is well within one standard

error.

The selection intensity of the mean selection profile is 0.893, the selection

variance is 1.243, and the loss of diversity is 0.408.

Figure 4.6 shows the (mean) selection profiles of the Onemax and Lawn-

mower problems, together with the selection profile of tournament selection

(t = 6). The three selection profiles are remarkably similar. They have the

same general shape, and they peak at almost exactly the same value.

tournament
Lawnmower

Onemax

(Normalised) Rank

R
ep

ro
d
u
ct

io
n

R
at

e

1.21.00.80.60.40.20.0-0.2

10

8

6

4

2

0

-2

Figure 4.6: Selection profiles evolved over the Onemax (see Figure 4.4) and

Lawnmower (see Figure 4.5) problems, together with the profile of tourna-

ment selection (t = 6).

Though the two evolved selection profiles perform about as well as tourna-

ment selection, and though the three appear (visually) to be roughly equiva-

lent, their selection intensity, variance, and loss of diversity vary considerably:

CHAPTER 4. SELECTION PROFILES 59

Onemax Lawnmower Tournament

Selection Intensity 1.156 0.893 1.257

Selection Variance 0.743 1.243 0.415

Loss of Diversity 0.534 0.408 0.582

This suggests that the measures are too sensitive: they give the impression

that large differences exist when in fact they are either small or non-existent.

(Note also that the Lawnmower-evolved selection profile actually increases

variance, unlike every one of the selection schemes described in Chapter 3.)

4.3.4 Experiment 2: Results and Discussion

The first experiment demonstrated the feasibility of evolving selection pro-

files. In this experiment we explore the relationship between selection profiles

and problem difficulty. For the inner GA, we chose the R1 problem from the

Royal Road test suite (Forrest and Mitchell, 1993). In Forrest and Mitchell’s

canonical version, individuals are 64 bits long, and their fitness is determined

by the number of specially-chosen schemata they match. For the standard

64-bit problem, there are 8 fitness-defining schemata, each defined over a

different set of 8 consecutive bits. The first consists of 8 1s followed by 56

*s, the second consists of 8 *s followed by 8 1s followed by 48 *s, and so

on. If n is the number of schemata a bit string matches, then its fitness is

(n × 8)/64 = 0.125n.

Figure 4.7 shows the selection profiles that evolved under the R1 problem,

where the length of the bit string varied from 16 to 48 bits. As the bit string

became longer, and the problem became harder (the 16-bit problem required

about 40 generations to solve, the 48-bit problem 120) the selection profile

grew less aggressive, selecting less-fit individuals more often. A limit seems

to have been reached around 40 bits—the selection profiles for the 40 and 48

bit problems are practically identical.

This result is to be expected. As the bit strings grow in length, it becomes

more and more important to preserve diversity. Suppose that, on the 64-bit

CHAPTER 4. SELECTION PROFILES 60

problem, a single bit string matches two fitness-defining schemata (the first

and the third, say), but that several match one of the other six schemata.

If the selection profile is very steep, then descendents of the most fit bit

string will come to dominate the population within a few generations. The

less fit bit strings will be wiped out, and with them the strings that match

fitness-defining schemata other than the first and third. These strings would

have been useful crossover partners to the most-fit bit string; once they go,

the schema-matching bits they held can only be restored through the slow

process of mutation.

A less aggressive selection profile becomes increasingly beneficial as the bit

string grows in length. It preserves more of the less-fit individuals, which can

then be crossed with the more-fit individuals to produce even fitter offspring.

48 bits
40 bits
32 bits
24 bits
16 bits

(Normalised) Rank

R
ep

ro
d
u
ct

io
n

R
at

e

1.21.00.80.60.40.20.0-0.2

6

5

4

3

2

1

0

-1

Figure 4.7: Selection profiles evolved over problem R1 (see Forrest and

Mitchell, 1993). Refer to Figure 4.4 for further details.

CHAPTER 4. SELECTION PROFILES 61

4.3.5 Experiment 3: Results and Discussion

Evolutionary Algorithms typically use the same selection scheme throughout

their run. This practice seems a odd when one considers that the character-

istics of the population change markedly over the course of a run. Initially,

the population is very diverse; as time goes on it becomes more and more

homogenous as it converges on a single point. It seems likely that a different

style of selection is needed at different times in order to maintain the right

balance between exploration and exploitation. Whilst rank-based selection

schemes might help with this, it seems likely that EAs could benefit from a

different selection scheme being used at different stages of the run.

Previous research has demonstrated that adaptive genetic operators—

operators whose behaviour changes over the course of the run—can improve

the performance of an EA (Angeline, 1996; Teller, 1996; Spears, 1995). In

this experiment we investigate whether a similar result holds for selection

schemes.

The basic experimental procedure is the same as that of the previous

experiment except for these two differences: (1) the outer GA evolves indi-

viduals made up of two selection profiles; and (2) the inner GA uses the first

selection profile whilst the fitness of the most fit individual is less than or

equal to some specified “switch point,” and the second otherwise. (Switching

is not “sticky”; if the fitness of the most fit individual drops below the switch

point, the first selection profile is re-used.)

In the first experiment, the inner GA ran the Onemax problem, and

the “switch point” was set at 0.75. This resulted in a switch at around the

third generation.7 Figure 4.8 shows the selection profile that evolved during

7Note that though the first selection profile directly affects the time at which the

switch point is reached, its influence extends beyond this. Though selection profile P1

may guide the population to the switch point by the third generation, and P2 by the

fourth generation, this does not mean that the total number of generations required for

P1 to find an admissible solution is one less than the total required for P2 (even if the

same second phase selection profile is employed). The total depends a great deal on the

characteristics of the population at the time the switch takes place.

CHAPTER 4. SELECTION PROFILES 62

phase 1; Figure 4.9 shows the selection profile that evolved during phase 2;

Figure 4.10 shows both.

(Normalised) Rank

R
ep

ro
d
u
ct

io
n

R
at

e

1.21.00.80.60.40.20.0-0.2

10

8

6

4

2

0

-2

Figure 4.8: Phase 1 selection profile evolved over Onemax. The graph

depicts the phase 1 selection profile vectors present in a population of size 30

after 15 generations; 20 runs are represented. The selection vectors are of

length 9; each point represents one of the 9 values. The phase 1 selection

profile was used when the fitness of the most fit individual was less than

or equal to 0.75, and the second used otherwise. (Noise has been added to

x-values of these points.)

There is a small difference between the two selection schemes. The opti-

mal phase 2 selection scheme is more aggressive than the first, giving a greater

preference to high-ranking individuals. This is reflected in the statistics:

Phase 1 Phase 2

Selection Intensity 0.775 1.128

Selection Variance 0.930 0.794

Loss of Diversity 0.361 0.515

CHAPTER 4. SELECTION PROFILES 63

(Normalised) Rank

R
ep

ro
d
u
ct

io
n

R
at

e

1.21.00.80.60.40.20.0-0.2

10

8

6

4

2

0

-2

Figure 4.9: Phase 2 selection profile evolved over Onemax. Refer to Fig-

ure 4.8 for further details.

phase 2
phase 1

(Normalised) Rank

R
ep

ro
d
u
ct

io
n

R
at

e

1.21.00.80.60.40.20.0-0.2

10

8

6

4

2

0

-2

Figure 4.10: Phase 1 and phase 2 selection profiles, evolved over Onemax.

Refer to Figure 4.8 for futher details.

CHAPTER 4. SELECTION PROFILES 64

(Again, the figures seem to suggest a much greater difference between

profiles than is apparent from the graph.)

The fact that two distinct selection profiles evolve would appear to demon-

strate that as hypothesised, different stages of the run benefit from different

selection schemes. However, the mean run time (21.21 generations) for the

two-phase selection profile was not any shorter than that of the single-phase

profile. This presents us with some interpretational difficulties. We are faced

with a situation where different profiles have evolved, despite failing to im-

prove performance.

One possible answer is that the fitness function is in some way misleading—

even though it is brutally simple. The mean fitness of the population moves

from almost 100 generations to 20 generations (these being the amount of

time necessary for the inner GA to find the optimal solution) within about

15 generations. This rapid rate of increase could bias the outer GA’s search

through the space of selection profiles. Further research is required to an-

swer this question. (On this particular problem, other switch points led to

a phase 2 selection profile that was still more aggressive than stage one,

although the difference between the two was not as great.)

Chapter 5

Summary of Results and

Conclusions

• This thesis began with a critical examination of the Schema Theorem.

The Schema Theorem describes, via a lower bound, how the frequencies

of schemata change over time. This result is valid (though not particu-

larly useful). However, the Schema Theorem has also been used, by way

of analogy to the Two-Armed Bandit problem, to show that GAs go

about solving problems in an optimal way. We argue that the analogy

is weak, and the claim dubious as a result.

• The Building Block Hypothesis purports to explain how a GA puts

together admissible solutions. According to the hypothesis, short,

low-order schemata of high fitness are assembled into long, high-order

schemata of even greater fitness. This process continues until the solu-

tion is found. We present some arguments to show that the Building

Block Hypothesis, when cast into a testable form, is of questionable

utility.

• Whilst acknowledging that EAs have grown ever more capable over

the last ten years (to the point where they can now solve non-trivial

problems), we argue that there is a limit to what they can achieve. We

65

CHAPTER 5. SUMMARY OF RESULTS AND CONCLUSIONS 66

do not believe, as some do, that one day EAs will be able to perform

the highest of human tasks. This limitation is mostly due to the role

played by the fitness function. Nature does not have an explicit fitness

function; in EAs the fitness function (1) measures the wrong quantity

and (2) leads the search away from potentially crucial preadaptations.

(Systems lacking an explicit fitness function (such as A-life systems)

may not be subject to these limitations.)

• We described several different selection schemes, and presented three

measures that quantify their behaviour: selection intensity, selection

variance, and loss of diversity.

• Finally, we argued that selection schemes can be compared via their

selection profiles. As part of this work, we showed that the amount of

spread generated by a selection scheme has little or no impact on its

effectiveness. We evolved selection profiles with a meta GA and found

that the most effective selection schemes had a monotonically increasing

selection profile that rises sharply over the last 20% of ranks. This

profile closely matched that of tournament selection. We confirmed

that more difficult problems warrant less aggressive selection schemes.

We also found that it is useful to employ different selection schemes at

different stages of the run. These results are preliminary, and invite

further work.

Appendix A

How Many Schemata are

Processed?

GAs implicitly process schemata; explicitly, they process bit strings. A single

bit string of length l contains 2l schemata and so a population of n bit strings

contains somewhere between 2l and n × 2l distinct schemata. The actual

value is not likely to be very close to either the lower or the upper bound.

Goldberg (1989), following Holland (1975), estimates that the number of

schemata processed is “proportional to the cube of the population size and is

thus of order n3, O(n3)”; he remarks that this estimate is “widely quoted,”

but “poorly understood” (Goldberg, 1989, pp. 40 and 41). Below, we describe

Holland and Goldberg’s estimates of the number of schemata we can expect

to find in a population of n randomly-chosen bit strings. We further provide

an estimate that is more accurate than either.

A.1 Holland’s Estimate

Holland estimates the number of schemata represented in a given popula-

tion in two steps. First, considering a single schema partition P (a schema

partition is the set of all schemata that are instantiated over a given set of

positions; the set {*0*0, *0*1, *1*0, *1*1} is a schema partition), he finds

67

APPENDIX A. HOW MANY SCHEMATA ARE PROCESSED? 68

λ, the expected number of instances of schema H ∈ P . Second, he uses

the Poisson distribution to produce an estimate of r(n,N), the chance that

H matches at least n individuals in a population of N random bit strings.

Holland says:

On the assumption that elements of α [the search space] are

tried at random, uniformly (elements equally likely) and inde-

pendently, we can use the Poisson distribution to determine the

number of schemata receiving at least n < N trials [N is the pop-

ulation size]. The basic parameter required is the average number

of trials per schema for any set of schemata defined on h positions

[h is the order]. The value of this parameter is just N/kh [k is

the size of the alphabet; N/kh because each bit string matches

exactly one of the kh schemata] since there are ih schemata de-

fined on a fixed set of h positions. The Poisson distribution then

gives

r(n,N) =
∞∑

n′=n

((N/kh)n′
/n′!) exp(−N/kh)

as the proportion of schemata defined on the positions i1, . . ., kh

and receiving at least n out of N trials. (Holland, 1975, p. 72)

Holland uses the Poisson distribution as an approximation to the true

distribution. As it turns out, for “reasonable” values of n, N , and h, the

estimate is very close to correct. Below, we argue that the true distribution

is binomial; we also provide some feeling for the magnitude of the error.

A.2 Goldberg’s Estimate

What follows is Goldberg’s estimate1 as described in his book (Goldberg,

1989).

1Goldberg claims that his estimate is inspired by Holland’s but I am unable to see the

resemblance. The argument is, however, similar to that of Holland (1988, pp. 120–1) and

Booker et al. (1989, p. 263).

APPENDIX A. HOW MANY SCHEMATA ARE PROCESSED? 69

Goldberg’s estimate is produced by first counting the number of schemata

with a defining length of ls or less represented by an individual bit string of

length l. There are l− ls + 1 unique sliding “windows” of length ls, and each

window contains 2ls−1 schemata (to ensure uniqueness we must, at the same

point within each window, fix one bit). Thus, the number of schemata of

length ls or less is not less than 2ls−1 × (l − ls + 1).2

We now know the number of schemata that inhabit a single bit string.

Unfortunately, because the schemata are not necessarily unique, we can’t

simply multiply this figure by the population size to find the total number of

schemata. (We expect fully half the population to match 1*· · ·*, for exam-

ple.) We must take steps to ensure that our count contains no duplicates.

Goldberg realised that every schema within an order-n schema partition

can expect to be represented once in a population of size 2n since a schema

partition of order n contains 2n distinct schemata. (Schemata of lesser order

can expect to be represented more than once.) Thus, Goldberg reasons, we

can expect that a population of size 2ls/2 will contain all the schemata of

order ls/2, as well as all the (ls/2) − 1 schemata (some multiple times), all

the (ls/2) − 2 schemata, and so on. The schema of order ls/2 and more, on

the other hand, can expected to be represented only once; they exist once

by virtue of being present in the population, but the population is not big

enough for them to be represented any more than that. Since the number

of schemata is binomially distributed (with respect to order), the schemata

of order ls/2 and more number exactly half the total number of schemata.

Consequently, ns, the number of schemata represented in a population of size

2Goldberg presents this figure as the true number of schemata, but in actual fact the

number is slightly greater: some schemata are not counted by this sliding window system.

The counting system uses a window,

%%%%1*****

that slides to the right. (The % characters indicate the positions that take on either the

value that appears at that point in the bit string or the % character.) Clearly this counting

method fails to enumerate some schemata, such as 1*********.

APPENDIX A. HOW MANY SCHEMATA ARE PROCESSED? 70

n = 2ls/2 can be estimated as follows:

ns ≥ 2ls/2 × (l − ls + 1)2ls−1

2

≥ (l − ls + 1)n3

4
(A.1)

which leads directly to the O(n3) lower bound.

Goldberg’s estimate has several flaws:

1. It clearly does not hold for all n. If n is large enough, we would expect

all the schemata, of every defining length and order to be represented.

Therefore, even if the rate of growth is O(n3) over part of the range (to

interpret O(·) charitably), there is a point at which the rate of growth

will fall below O(n3), but Goldberg’s estimate does not indicate when

this occurs.

One suspects that n does not have to be very large for the O(n3)

growth rate to not apply. The expected number of copies of schemata

of order 10 and less (which implies a defining length of 10 or less)

is 1 or greater in a population of 1024 = 210 bit strings, for example.

In a population of 2048 = 2 × 210 bit strings, the expected number

is at least 2. We would expect most of the possible schemata to be

represented at this stage.

2. The O(n3) estimate only holds when ls = 2 log2 n, not for any combi-

nation of n and ls. (In other words, the O(n3) bound only holds if we

allow the length of the schemata included in the count to increase as

n does.) This constraint comes about because the population size was

specifically chosen to ensure that the expected number of schemata of

a given order was no more than one: “By choosing [n] in this man-

ner, we expect to have one or fewer of all schemata of order ls/2 or

more.” (Goldberg, 1989, p. 41) Thus, in equation (A.1), ls and n are

not independent, and the only claim that can be made is that if n hap-

pens to be equal to be 2ls/2, we can expect c × n3 schemata of length

ls or less to be represented.

APPENDIX A. HOW MANY SCHEMATA ARE PROCESSED? 71

It is strange that Goldberg (1985)—a technical report upon which the

schema-counting section of Goldberg (1989) is clearly based—recognises

exactly this problem. In a section inexplicably missing from his book,

Goldberg acknowledges that (for the above reaons) “by selecting a par-

ticular size population we limit the applicability of the equation” (Gold-

berg, 1989, p. 4). He goes on to say that arguments such as the follow-

ing are “faulty”: “ ‘Since the useful schema processing is of order n3,

to obtain increased schema leverage, simply increase your population

size’ ” (p. 4)—even though this is precisely the conclusion one would

draw from the schema-counting discussion in his book. And finally,

Goldberg says that because “the estimate for ns depends upon a par-

ticular choice of population size and any deviation in population size

invalidates the derivation . . . [then] if we are to shed any light on the

population size questions, we need to (1) count the number of unique

schemata expected in a given population and (2) derive a rational fig-

ure of merit for calculating an optimal population size.” (p. 4) If no

light has been shed on the problem thus far, what good is the O(n3)

estimate?

We note in passing that the selection of n = 2ls/2 in fact maximises the

per-bit-string number of instances of schemata of defining length ls or

less. That is, the ratio ns/n is maximised when n = 2ls/2. If n is any

smaller or larger, we get less schemata on a per-bit-string basis.

3. The argument involves sizing our population so that all the schemata

of a order d can expect to be represented at least once. (That is,

their expected number of instances is 1 or more.) Goldberg basically

assumes that in this event, every schema of order d or less can expect

to be represented. But this is different to saying that we can expect

every schema (i.e., all of them) to be represented!

Suppose we place 100 balls into a box, from which we sample 100 times,

with replacement. In this situation, each ball can expect to be selected

APPENDIX A. HOW MANY SCHEMATA ARE PROCESSED? 72

once. However, it is likely that some balls will be selected twice, and

hence there is a chance that a particular ball will not be selected at all.

This chance is (1 − (1/100))100 ≈ 0.37. That is, we can expect that of

the 100 balls, only 63 different balls will be actually be selected.

We cannot expect all the schemata of order (ls/2)− 1 to be present in

a population of size 2ls/2; such a population will contain duplicates.

A.3 An Alternative Estimate

There are
(

l
d

)
2d distinct schemata of order d in a bit string of length l, since

there are d “fixed” (or instantiated) positions, each of which can take one of

two values (0 or 1), and there are
(

l
d

)
distinct ways to choose which d of l

positions are fixed. A randomly chosen string matches a schema of order d

with probability 0.5d, since there are d positions at which the value of the

string and the schema must match, and at each position, there is a 0.5 chance

that the two will match.

The probability that at least one randomly-chosen bit string in a popu-

lation of size n matches a schema of order d is then

1 − (
1 − 0.5d

)n

and thus the expected number of schemata of order d that match at least

one bit string is

M ′(l, n, d) =

(
l

d

)
2d

(
1 − (

1 − 0.5d
)n)

(A.2)

(The prime indicates that this is a restricted version of the formula; a more

general version is developed later.)

To get this result we multiplied the number of schemata in a given order

by the chance that a single schema of that order matches at least one member

of the population. But it would seem that the latter value is not constant, and

that it depends on the schemata that are already known to exist. Suppose

APPENDIX A. HOW MANY SCHEMATA ARE PROCESSED? 73

that we are trying to determine which schema of order two are represented

in a population. We might find that the following situation holds:

Schema Exists?

H1 = 00*** Yes

H2 = 01*** No

H3 = 10*** Yes
...

...

Hk = *1*1* ?
...

...

The chance that Hk exists is not independent, but is affected by the

knowledge that H1 and H3 do exist, and that H2 does not. (The problem

is particularly acute if the population size is small. If there are only two

individuals, for example, then we know immediately that Hk does not exist.)

Though I have not yet been able to prove that equation (A.2) holds,

empirical evidence suggests that it does, or at least nearly so. Knowing that

a particular schema exists lowers the chance that some others do, but it also

raises the chance of an equal number.

The total number of distinct schemata matched in a population of n bit

strings of length l is then

T ′(l, n) =
l∑

i=0

M ′(l, n, i)

=

(
l

d

) l∑
i=0

(
1 − (

1 − 0.5i
)n)

=

(
l

d

) (
l −

l∑
i=0

(
1 − 0.5i

)n

)

Figure A.1 shows the proportion of schemata that match at least one

individual in a population of n bit strings of length 10. Just over 90% are

represented in a random population of 500 bit strings. (Amongst those miss-

ing are approximately 500 schemata of order 10. There are 210 = 1024

APPENDIX A. HOW MANY SCHEMATA ARE PROCESSED? 74

Population size
500450400350300250200150100500

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Figure A.1: The proportion of schemata that match at least one individual

in a population of n bit strings of length 10.

distinct members of this set, which is about 500 more than there are strings

in the population. On the other hand, we can expect that every one of the(
10
1

)
21 = 20 order-1 schemata will be represented.) The total number of

schemata is
∑10

i=0

(
10
i

)
2i = 59049. (Which can be seen to be equal to 310,

which is the answer we get if we consider each schema to be a bit string

composed of letters from an alphabet of size 3.)

We can also determine the expected number of schemata of order d that

matched at least a, and at most b, individuals in a population of size n.

(Typically, b = n; we want to know the number of schemata that match at

least a times.) This quantity is

M b
a(l, n, d) =

(
l

d

)
2d

(
b∑

i=a

β(0.5d, n, i)

)
(A.3)

where β(p, n, r) is the binomial distribution, β(p, n, r) =
(

n
r

)
pr(1− p)n−r and

l is the length of the bit strings.

The total number of distinct schemata matched by between a and b in-

APPENDIX A. HOW MANY SCHEMATA ARE PROCESSED? 75

dividuals in a population of n bit strings is thus

T b
a(l, n) =

l∑
i=0

M b
a(l, n, i)

=
l∑

i=0

b∑
j=a

(
l

i

)
2iβ(0.5i, n, j) (A.4)

Sometimes we want to find the number of schemata with a defining length

of f or less that are represented by at least r individuals. (Such a figure is

useful, for example, if we wish to determine how many schemata are likely

to survive crossover.) We can calculate this figure by employing a variation

of Goldberg’s “sliding windows” technique.

Suppose our window is of width f . Then T∞
r (f, u) is the number of

distinct schemata we can expect to find within this particular window. Un-

fortunately, multiplying this figure by however many unique positions the

window can take will count some schemata more than once. So instead, we

divide the window into two sections. The first consists of one fixed bit that

can be either 0 or 1, but not *. The second section is of length f − 1, and is

unrestricted in content. The number of schemata contained by this two-part

window is then T∞
r (f − 1, n). (If there are T∞

r (f − 1, n) schemata of length

f − 1 represented in a population of size n, then if we add one bit to the

start of the schema, and require that it be fixed, exactly the same number of

schemata as before must be represented, since the first bit of any randomly

chosen bit string must be either 0 or 1—nothing previously included is now

excluded, and vice versa.)

Since the first bit is defined (fixed) in every one of these windows, no

two window positions along the bit string will yield any duplicate schemata.

Hence, an upper bound for the expected number of schemata of defining

length f or less that are represented at least r times in a population of size n

is

Sr(l, n, f) ≤ 1 + (l × T∞
r (f − 1, n)) (A.5)

where l is the length of the bit string. (This is an upper bound because we

advance the window l times; after position l− f , part of the window extends

APPENDIX A. HOW MANY SCHEMATA ARE PROCESSED? 76

past the “end” of the bit string, which means that we count schemata that

can’t possibly exist. (The overestimate grows smaller as f/l does.) The “1+”

is for the schema *· · ·* which is otherwise not counted.)

Population size
10009008007006005004003002001000

2.0e+06

1.8e+06

1.6e+06

1.4e+06

1.2e+06

1.0e+06

8.0e+05

6.0e+05

4.0e+05

2.0e+05

0.0e+00

Figure A.2: The number of schemata of defining length 10 or less that match

at least three individuals in a population of n bit strings of length 100.

Figure A.2 shows the number of schemata of defining length 10 or less

and length 30 or less that match at least three individuals in a population

of n bit strings of length 30. The number of schemata is vastly greater than

the number of bit strings, but the rate of growth is not O(n3). Figure A.3 is

the same, except that it shows the number of schemata of defining length 30

or less. Over this range of population sizes, the rate of growth is somewhat

closer to O(n3).

A.4 Comparison of Measures

Figure A.4 shows the ratio between Holland’s Poisson-based estimate of the

number of schemata of order 5 and order 10 that are represented at least 3

APPENDIX A. HOW MANY SCHEMATA ARE PROCESSED? 77

1 × 103 × x3
order 30

Population size
10009008007006005004003002001000

1.0e+12

9.0e+11

8.0e+11

7.0e+11

6.0e+11

5.0e+11

4.0e+11

3.0e+11

2.0e+11

1.0e+11

0.0e+00

Figure A.3: The number of schemata of defining length 30 or less that match

at least three individuals in a population of n bit strings of length 100.

times in a population of size n and the estimate developed on the previous

section. The difference decreases as the population gets larger; it is small

for typical population sizes, and the measures are clearly of the same order.

Note that length of the bit string itself does not enter into the calculation.

Goldberg’s O(n3) estimate cannot be meaningfully compared with either

Holland’s estimate or the binomial-based estimate presented above.

APPENDIX A. HOW MANY SCHEMATA ARE PROCESSED? 78

order 10
order 5

Population size
500450400350300250200150100500

1.18

1.16

1.14

1.12

1.10

1.08

1.06

1.04

1.02

1.00

0.98

Figure A.4: The graph of h/t, where h is Holland’s estimate and t is the

estimate developed in Section A.3. The number to estimate is the number

of schemata of order 5 and order 10 that are represented at least 3 times in

a population of size n.

Bibliography

Peter J. Angeline. Two self-adaptive crossover operators for genetic program-

ming. In Peter J. Angeline and Jr. K. E. Kinnear, editors, Advances in

Genetic Programming 2, chapter 5, pages 89–110. MIT Press, Cambridge,

Massachusetts, 1996.

Thomas Bäck. Selective pressure in evolutionary algorithms: A characteriza-

tion of selection mechanisms. In Proceedings of the First IEEE Conference

on Evolutionary Computation, pages 57–62, 1994.

James Edward Baker. Reducing bias and inefficiency in the selection al-

gorithm. In John J. Grefenstette, editor, Genetic Algorithms and Their

Applications: Proceedings of the Second International Conference on Ge-

netic Algorithms. Erlbaum, 1987.

Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Fran-

cone. Genetic programming—an introduction: on the automatic evolution

of computer programs and its applications. Morgan Kaufmann, San Mateo,

California, 1998.

Tobias Blickle and Lothar Thiele. A comparison of selection schemes used in

evolutionary algorithms. Evolutionary Computation, 4(4):361–394, May

1997. URL http://www.handshake.de/user/blickle/publications/

ECfinal.ps. Quotations are taken from the on-line version.

L. B. Booker, D. E. Goldberg, and J. H. Holland. Classifier systems and

genetic algorithms. Artificial Intelligence, 40:235–282, 1989.

79

BIBLIOGRAPHY 80

William H. Calvin. The emergence of intelligence. Scientific American, pages

79–85, October 1994.

James F. Crow and Motoo Kimura. An Introduction to Population Genetics

Theory. Harper & Row, New York, 1970.

Robert Dorit. Book review: Darwin’s Black Box: The Biochemical Challenge

to Evolution. American Scientist, September/October 1997. URL http:

//www.amsci.org/amsci/bookshelf/Leads97/Darwin97-09.html.

William Feller. An Introduction to Probability Theory and Its Applications.

John Wiley & Sons, 3rd edition, 1968.

Stephanie Forrest and Melanie Mitchell. Relative building-block fitness and

the building-block hypothesis. In L. Darrell Whitley, editor, Foundations

of Genetic Algorithms 2, pages 109–126. Morgan Kaufmann, San Mateo,

California, 1993.

Douglas J. Futuyma. Evolutionary Biology. Sinnauer Associates, Inc., Sun-

derland, Massachusetts, third edition, 1998.

David E. Goldberg. Optimal initial population size for binary-coded genetic

algorithms. Technical report, Tuscaloosa: University of Alabama, 1985.

TCGA Report No. 85001.

David E. Goldberg. Genetic Algorithms in Search, Optimization, and Ma-

chine Learning. Addison Wesley, Reading, Massachusetts, 1989.

David E. Goldberg and Kalyanmoy Deb. A comparative analysis of selection

schemes used in genetic algorithms. In Gregory J. E. Rawlins, editor,

Foundations of Genetic Algorithms, pages 69–93. Morgan Kaufmann, San

Mateo, California, 1991.

John J. Grefenstette. Optimization of control parameters for genetic al-

gorithms. IEEE Transactions on Systems, Man, and Cybernetics, 16(1):

122–128, 1986.

BIBLIOGRAPHY 81

John J. Grefenstette. Deception considered harmful. In L. Darrell Whit-

ley, editor, Foundations of Genetic Algorithms 2, pages 75–91. Morgan

Kaufmann, San Mateo, California, 1993.

John J. Grefenstette and James E. Baker. How genetic algorithms work: A

critical look at implicit parallelism. In J. David Schaffer, editor, Proceed-

ings of the Third International Conference on Genetic Algorithms, pages

20–27, San Mateo, California, 1989. Morgan Kaufmann.

John Holland. Adaptation in Natural and Artificial Systems. University of

Michigan Press, 1975. Quotations and page numbers taken from the 2nd

edition, MIT Press, 1992.

John H. Holland. The dynamics of searches directed by genetic algorithms.

In Y. C. Lee, editor, Evolution, Learning and Cognition, pages 111–127.

World Scientific, Singapore, 1988.

David Hume. A Treatise of Human Nature. 1739.

Terry Jones and Stephanie Forrest. Fitness distance correlation as a measure

of problem difficult for genetic algorithms. In Larry J. Eshelman, editor,

Proceedings of the Sixth International Conference on Genetic Algorithms,

pages 184–192, San Francisco, 1995. Morgan Kaufmann.

John R. Koza. Genetic Programming: On the Programming of Computers by

Means of Natural Selection. MIT Press, Cambridge, Massachusetts, 1992.

John R. Koza. Genetic Programming II: Automatic Discovery of Reusable

Programs. MIT Press, Cambridge, Massachusetts, 1994.

William B. Langdon. Genetic Programming and Data Structures: Genetic

Programming + Data Structures = Automatic Programming. Kluwer Aca-

demic Publishers, Boston, 1998.

Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution

Programs. Springer-Verlag, New York, third edition, 1996.

BIBLIOGRAPHY 82

Melanie Mitchell. An Introduction to Genetic Algorithms. The MIT Press,

Cambridge, Massachusetts, 1996.

Una-May O’Reilly. An Analysis of Genetic Programming. PhD thesis, Car-

leton University, 1995. URL http://www.ai.mit.edu/people/unamay/

thesis.html.

Ralf Salomon. The influence of different coding schemes on the computational

complexity of genetic algorithms in function optimization. In Hans-Michael

Voigt, Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors,

Parallel Problem Solving from Nature, pages 227–235, New York, 1996.

Springer-Verlag.

William M. Spears. Adapting crossover in evolutionary algorithms. In

John R. McDonnell, Robert G. Reynolds, and David B. Fogel, editors, Evo-

lutionary Programming IV: Proceedings of the Fourth Annual Conference

on Evolutionary Programming, pages 367–384, Cambridge, Massachusetts,

1995. MIT Press.

Astro Teller. Evolving programmers: The co-evolution of intelligent recom-

bination operators. In Peter J. Angeline and Jr. K. E. Kinnear, editors,

Advances in Genetic Programming 2, chapter 3, pages 45–68. MIT Press,

Cambridge, Massachusetts, 1996.

Michael D. Vose. Generalizing the notion of schema in genetic algorithms.

Artificial Intelligence, 50:385–396, 1991.

David H. Wolpert and William G. Macready. No Free Lunch theo-

rems for search. Technical Report 95-02-010, The Santa Fe Institute,

1995. URL http://www.santafe.edu/sfi/publications/Abstracts/

95-02-010abs.html.

David H. Wolpert and William G. Macready. On 2-armed Gaussian Bandits

and optimization. Technical Report 96-03-009, The Santa Fe Institute,

BIBLIOGRAPHY 83

1996. URL http://www.santafe.edu/sfi/publications/Abstracts/

96-03-009abs.html.

